Jet and photon production and extraction of α_S at HERA

Radek Žlebčík¹ On behalf of H1 and ZEUS collaborations

¹ Deutsches Elektronen-Synchrotron (DESY)

New Frontiers in Physics **Kolymbari, August 2**4

HERA Collider

- The only existing ep collider (1992 2007)
- About **0.5 fb**⁻¹ of data per experiment
- Two multi-purpose detectors (H1 + ZEUS)

 e^{\pm} + p 27.6 GeV + 920 GeV $\sqrt{s} = 319 \,\text{GeV}$

Diffractive photoproduction of the isolated photon (ZEUS)

DESY-17-077 [arXiv:1705.10251] submitted to Phys. Rev. D

Diffractive **photoproduction** of isolated photon

- $Q^2 \approx 0 \rightarrow$ photon may dissociate into low mass hadronic system (structure of such resolved photon described by γPDF)
- $Q^2 \approx 0 \rightarrow \theta_e \approx 180^\circ$ (electron leaves detector undetected)

Photon momentum fraction entering the hard subprocess:

$$x_{\gamma} = \frac{\sum_{\gamma + \text{jet}} (E - p_z)}{\sum_{\text{EFO}} (E - p_z)}$$

4

Diffractive photoproduction of isolated photon

- Diffraction → beam proton stays intact and leaves detector undetected
- Standardly described by exchange of an hadronic object with vacuum quantum numbers (pomeron)

Pomeron momentum fraction entering the hard subprocess:

$$z_{IP} = \frac{\sum_{\gamma + \text{jet}} (E + p_z)}{\sum_{\text{EFO}} (E + p_z)}$$

Theoretical predictions

Diffractive predictions (Resolved pomeron)

- Resolved pomeron model (Ingelman Schlein)
- Implemented in the MC generator RAPGAP (LO matrix element + LL parton shower + Lund string fragmentation)
- Contains direct and resolved photon processes

- The partonic structure of the resolved pomeron described by H1 2006 DPDF Fit B (from fits of inclusive diffractive DIS)
- The partonic structure of the resolved photon described by SASGAM-2D yPDF

 Non-diffractive background simulated by Pythia 6 No model for the possible direct pomeron interaction available

Extraction of prompt photons signal

- Template fit to obtain the signal and background contribution
- Background mainly from $\pi^0(\eta) \to \gamma\gamma$
- Width of the photon candidate cluster in the beam direction in units of cell width δ_{cell}

$$\langle \delta Z \rangle = \frac{\sum_{i} E_{i} |Z_{i} - Z_{cluster}|}{\delta_{cell} \sum_{i} E_{i}}$$

 90% of photon candidate energy required to be measured in EM calorimeter

	Gamma events	Gamma+jet events
HERA I (82 pb ⁻¹)	91	76
HERA II (374 pb ⁻¹)	366	311

Direct pomeron exchange?

 $\Lambda \Lambda \Lambda \gamma$

Direct pomeron interactions?

- The $z_{IP} < 0.9$ region well described by MC both in shape and normalization $\sigma_{\rm data}^{z_{IP} < 0.9} = 0.57 \pm 0.13 \, {\rm pb}$ $\sigma_{\rm MC}^{z_{IP} < 0.9} = 0.68 \, {\rm pb}$
- The $z_{IP} > 0.9$ region overshot in data

Rapgap reweighted: MC reweighted separately for $z_{IP} < 0.9$ and $z_{IP} > 0.9$ to data

Prompt photon transverse momentum

- Shape of the gamma transverse momentum well described by MC prediction (MC always normalized to data)
- 85% of events with prompt photon contain jet as well

Spectrum of x_{IP}

- The relative energy loss of the leading proton with respect to the incoming beam proton (~1%)
- As leading proton directly not measured, reconstructed from EFO

$$x_{IP} = 1 - \frac{E'_p}{E_p}$$

$$x_{IP} = \frac{\sum_{\text{EFO}} (E + p_z)}{2E_p}$$

Direct vs Resolved pomeron

Conclusion 1

- The first measurement of diffractively produced prompt photon
- The peak in z_{IP} distribution suggests direct pomeron interactions (occurring mostly in direct photon interactions)
- Other distributions well described by MC prediction

Extraction of α_S at NNLO from jet cross sections in DIS (H1)

H1prelim-17-031 [http://www-h1.desy.de/publications/H1preliminary.short_list.html] DESY-16-200 Eur.Phys.J.C77 (2017) 4, 215 [arxiv:1611.03421]

NNLO α_S fit of H1 jets data in DIS

Why α_S ?

- Among the least known SM parameters $G_F = 1.1663787(6) \times 10^{-5} \,\mathrm{GeV}^{-2}$ $\alpha_S = 0.1181(11)$ [PDG16]
- Great importance for LHC
 physics

Why now?

- NNLO revolution in the last years
- NNLO predictions now available for both *pp* and *ep* dijets
- LHC has not fitted their **jet** data with NNLO yet

Dijet DIS production at H1

First NNLO α_S fit of the jet ep data

NNLO calculations

- New NNLO predictions for ep dijets based on antenna subtraction J. Currie, T. Gehrmann, A. Huss and J. Niehues, JHEP 07 (2017) 018, [1703.05977]
- Matrix element tables precalculated by **NNLOJET** program (~1M CPU hours)
- Then convoluted with PDFs and α_S using fastNLO (<1s)

$$\sigma_i = \sum_{k=g,q,\bar{g}} \int dx f_k(x,\mu_F) \,\hat{\sigma}_{i,k}(x,\mu_R,\mu_F) \cdot c_{\text{had}},$$

 $\sum \alpha_S^n(\mu_R) \,\hat{\sigma}_{i,k}^{(n)}(x,\mu_R,\mu_F)$

 $\hat{\sigma}_{i,k}(x,\mu_R,\mu_F) =$

fastNLO

n

crosschecked with NLOJET++ & SHERPA real-virtual

17

Real-real + real-virtual

A bit of history

- **1973** Asymptotic freedom of QCD
- **1993** NLO studies of DIS jets
- **2016** NNLO corrections for DIS jets

H1 Data – Dijets

Double-diff.

- Q^2 and $\langle p_T
 angle_2$
- Mean dijet p_T $\langle p_T \rangle_2 = \frac{p_T^{\text{jet1}} + p_T^{\text{jet2}}}{2}$

jets found in $\gamma^* p$ with k_T algo (R=1)

NLO predictions

- NNPDF 3.0 NLO
- Larger scale unc.
- Chi2/ndf = 1.4

NNLO predictions

- NNPDF 3.0 NNLO
- Smaller scale unc.
- Chi2/ndf = 0.6

H1 Data – Inclusive jets

Double-diff.

- Q^2 and $p_T^{
 m jet}$
- Mean dijet p_T 0.2 < y < 0.6 $-1 < \eta_{
 m lab}^{
 m jet} < 2.5$ jets found in $\gamma^* p$

with k_{T} algo (R=1)

NLO predictions

- NNPDF 3.0 NLO
- Larger scale unc.
- Chi2/ndf = 1.7

NNLO predictions

- NNPDF 3.0 NNLO
- Smaller scale unc.
- Chi2/ndf = 1.3

Scale dependence

- The NNLO predictions depend **less** on the renormalization scale (=have smaller theor. unc.)
- To estimate the uncertainty the scale varied up and down by the factor of 2
- As a scale we use $\mu_R = \mu_R = \sqrt{Q^2 + p_T^2}$

Others functional forms also tested

Functional form of the scale

- 7 possible function studied
- NNLO α_S is usually smaller than the NLO one
- The NNLO chi² is usually better
- NNLO scale unc. is smaller

$$\begin{array}{rcl} \mu^2 &=& Q^2 \\ \mu^2 &=& p_T^2 \\ \mu^2 &=& Q^2 + p_T^2 \\ \mu^2 &=& \frac{Q^2 + p_T^2}{2} \\ \mu^2 &=& \sqrt{Q^4 + p_T^4} \\ \mu^2 &=& Q^2/4 + p_T^2 \\ \mu^2 &=& 400 \, {\rm GeV}^2 \end{array}$$

All data above m_{h} threshold used ²¹

α_S in PDF and α_S in ME

- Alpha strong affecting both, PDFs and matrix element
 - Both effects considered, α_S in ME more prominent

$$\sigma_{i} = \sum_{k=g,q,\bar{q}} \int dx f_{k}(x,\mu_{F}) \hat{\sigma}_{i,k}(x,\mu_{R},\mu_{F}) \cdot c_{\text{had}}$$

$$\hat{\sigma}_{i,k}(x,\mu_R,\mu_F) = \sum_n \alpha_S^n(\mu_R) \,\hat{\sigma}_{i,k}^{(n)}(x,\mu_R,\mu_F)$$

DGLAP equations $\mu_F^2 \frac{df}{d\mu_F^2} = P(z, \alpha_s) \circledast f(x, \mu_F^2)$

PDFs at scale $\mu_0 = 30 \,\text{GeV}$ very well constrained by lot of data $\rightarrow \alpha_S$ - "independent"

Original PDFs from scale $\mu_0 = 30 \,\text{GeV}$ evolved to higher/lower scales by DGLAP with $\alpha_S = \alpha_S$ (fit par.)

Independent fitting of two α_S

• The alpha strong from PDF and ME consistent

$$\sigma_i = f\left(\alpha_{\rm s}^f(m_Z)\right) \otimes \hat{\sigma}_i\left(\alpha_{\rm s}^{\hat{\sigma}}(m_Z)\right) \cdot c_{{\rm had},i}$$

Which data use in the fit?

- The scale uncertainty gets higher with smaller scales ($\mu = \sqrt{p_T^2 + Q^2}$)
- We use only data $\mu > \mu_{
 m cut}$

Compromise $\mu_{\rm cut} = 28 \, {\rm GeV}$

Running of alpha strong

History of Alpha Strong

- The current world average value $\alpha_s(m_Z) = 0.1181(11)$
- Mostly driven by lattice and tau-decays
- From LHC the most precise estimate is from ttbar (NNLO)

At least NNLO fits [PDG16]

Measured alpha strong value

Hadronisation

unc.

- Consistent with the "world average value"
- Consistent with α_S from global \bullet **PDF** fits
- The NNLO reduces the scale uncertainty by half
- The theoretical scale \bullet uncertainty still dominant

Data unc.

Conclusion 2

- The α_S from the jet DIS data estimated with NNLO precision for the first time
- The obtained value competitive with LHC and LEP measurements
- The uncertainty of H1 data even now smaller than the theoretical one \rightarrow waiting for N³LO

Subclass	$\alpha_s(M_Z^2)$
au-decays	0.1192 ± 0.0018
lattice QCD	0.1188 ± 0.0011
structure functions	0.1156 ± 0.0021
e^+e^- [jets & shps]	0.1169 ± 0.0034
hadron collider	$0.1151 \stackrel{+ 0.0028}{- 0.0027}$
ew precision fits	0.1196 ± 0.0030

S. Bethke, Nucl.Part.Phys.Proc. 282-284 (2017) 149-152

H1 NNLO jets

 0.1156 ± 0.0032