DIFFRACTIVE PRODUCTION OF ISOLATED PHOTONS WITH THE ZEUS DETECTOR AT HERA

Aharon Levy
Tel Aviv University

for the ZEUS Collaboration
Hard scattered photons are measured in the BCAL, which is finely segmented in the Z direction.

Photoproduction: No scattered electron observed, $0.2 < y_{JB} < 0.7$, usual cut

Diffraction: No energy in the forward region, $\eta_{max}^{EFO} < 2.5$ - Large Rapidity Gap (LRG)
\[e^\pm + p \rightarrow (e^\pm) + \gamma + X + \text{[LRG]} + (p \text{ or } \text{pdiss}) \]

\[\gamma^* + p \rightarrow \gamma + X + \text{[LRG]} + (p \text{ or } \text{pdiss}) \]

\{ \gamma^* - \text{quasi-real} \left(Q^2 < 1 \text{ GeV}^2, Q^2 \sim 10^{-5} \text{ GeV}^2 \right), \text{no scattered electron observed} \}

\[\gamma - \text{isolated high } E_T \left(> 5 \text{ GeV} \right), \ X - \text{hadrons or jets} \]
The outgoing Photon
Photon candidates: groups of signals in cells in the BEMC. Each has a Z-position, Z_{CELL}. E-weighted mean of Z_{CELL} is Z_{Mean}.

Task: to separate signal photons from background coming from photon decays of neutral mesons.

$$<dZ> = \text{E-weighted mean of } \left| Z_{\text{CELL}} - Z_{\text{Mean}} \right|.$$
Monte Carlo simulation

Uses the **RAPGAP** generator

Based on leading order parton-level QCD matrix elements.
Some higher orders are modelled by initial and final state leading-logarithm parton showers.
Fragmentation uses the Lund string model as implemented in PYTHIA.

The H1 2006 DPDF fit B set is used to describe the density of partons in the diffractively scattered proton.
For resolved photons, the SASGAM-2D pdf is used.
Examples of lowest-order “resolved–Pomeron” diagrams by which diffractive processes may generate a prompt photon

Direct incoming photon gives all its energy to the hard scatter \((x_\gamma = 1)\).

\[
\{ x_\gamma^{\text{meas}} = \frac{\Sigma_{\gamma + \text{jet}}(E - p_z)}{\Sigma_{\text{all EFOs}}(E - p_z)} \}
\]

Resolved incoming photon gives fraction \(x_\gamma\) of its energy.
Some kinematics:

\(x_{IP} = \) fraction of proton energy taken by Pomeron, measured as
\[
\frac{\Sigma_{all\ EFOs} \ (E + p_z)}{2 \ E_p}
\]

\(z_{IP} = \) fraction of Pomeron \(E + p_z\) taken by photon + jet measured as
\[
\frac{\Sigma_{\gamma + jet} \ (E + p_z)}{\Sigma_{all\ EFOs} \ (E + p_z)}
\]

\(\eta_{max} = \) maximum pseudorapidity of observed outgoing particles \((E > 0.4 \ GeV)\) (ignore forward proton).

Diffractive processes are characterised by a low value of \(\eta_{max} \) **and/or low** \(x_{IP} \).
Possible “direct Pomeron” interactions require a different type of diagram.

e.g.

Direct photon + “direct Pomeron”

Resolved photons also a possibility.

N.B. The proton may become dissociated in diffractive processes
1) The forward scattered proton is not measured in these analyses.

2) Remove non-diffractive events: $\eta_{\text{max}} < 2.5$ and $x_{IP} < 0.03$

η_{max} is evaluated from ZEUS energy flow objects (EFOs), which combine tracking and calorimeter cluster information.

3) Remove remaining DIS events and Bethe-Heitler and DVCS events.

Exclude events with identified electron or ≤ 5 EFOs

4) Remaining non-diffractive events neglected, could be 0-10% of our cross sections. Treated as a systematic.

5) **HERA I** data: use the FPC to remove much non-diffractive background.

It also suppressed many proton dissociation events.

- **Use HERA-I data to measure total cross section.** 82 pb$^{-1}$
- **Use HERA-II data to study shapes of distributions.** 374 pb$^{-1}$
Hard photon candidate:
- found with energy-clustering algorithm in BCAL: \(\frac{E_{\text{EMC}}}{E_{\text{EMC}} + E_{\text{HAD}}} > 0.9 \)
- \(E_{T\gamma} > 5 \text{ GeV} \)
- \(-0.7 < \eta_{\gamma} < 0.9 \) where \(\eta \equiv \text{pseudorapidity} \). (i.e. in ZEUS barrel calorimeter)
- **Isolated.** In the “jet” containing the photon candidate, the photon must contain at least 0.9 of the “jet” \(E_T \)

Jets
- use \(k_T \)-cluster algorithm
- \(-1.5 < \eta^{\text{jet}} < 1.8 \)
- \(E_{T^{\text{jet}}} > 4 \text{ GeV} \)
Fit the x_γ distribution to direct and resolved RAPGAP components. A 70:30 mixture is found and used throughout.

\[
x_\gamma^{\text{meas}} = \frac{\sum_y + \text{jet} (E - p_z)}{\sum_{\text{all EFOs}} (E - p_z)}
\]
Plot z_{IP}^{meas} and compare with RAPGAP

Shape does not agree.
An excess is seen in the top bin.
Can reweight Rapgap to describe the shape.

Unreweighted RAPGAP here normalised to $z_{IP}^{meas} < 0.9$ data. Otherwise, unless stated, RAPGAP is normalised to the full plotted range of data.

The η_{max} distribution is described better by the reweighted Rapgap.

Red histogram shows what 10% of non-diffractive PYTHIA photoproduction (subject to present cuts) would look like. (Not added into the RAPGAP)
Results

Cross sections compared to RAPGAP normalised to total observed cross section. **Inner error bar is statistical.** Outer (total) is correlated across all points and includes normalisation and non-diffractive subtraction uncertainty.

Transverse energy of photon.

Shape of data well described by RAPGAP. **Most photons are accompanied by a jet.**
Cross section in $z_{IP}^{\text{meas}} = \frac{\Sigma_{Y + \text{jet}}(E + p_z)}{\Sigma_{\text{all EFOs}}(E + p_z)}$

Evidence for “direct” Pomeron interactions

Using HERA-I data, integrated cross section for $z_{IP}^{\text{meas}} < 0.9 = 0.68 \pm 0.14^{+0.06}_{-0.07}$ pb

RAPGAP gives 0.68 pb. No allowance for proton dissociation which is $\sim 16 \pm 4\%$.
Cross sections for region $z_{IP}^{\text{meas}} < 0.9$ RAPGAP is normalised to data in this region.
Cross sections for region $z_{IP}^{\text{meas}} \geq 0.9$ RAPGAP is normalised to data in this region.
Summary

ZEUS have measured isolated ("prompt") photons in diffractive photoproduction, with an accompanying jet.

Cross sections for a diffractive region defined by cuts on n_{max} and x_{IP} have been evaluated.

Most of the detected photons are accompanied by a jet.

The variable $z_{\text{IP}}^{\text{meas}}$ shows a peak at high values that implies the presence of processes not currently modelled in RAPGAP. This gives evidence for a "direct-Pomeron" process Dominantly in the direct-photon channel.

In both regions of $z_{\text{IP}}^{\text{meas}}$ the cross sections of the kinematic variables are well described in shape by RAPGAP.
Backups
η_{max} distribution for HERA II.