DIFFRACTIVE PRODUCTION OF ISOLATED PHOTONS WITH THE ZEUS DETECTOR AT HERA

Aharon Levy

Tel Aviv University

for the **ZEUS** Collaboration

EPS 2017, Aharon Levy

THE REACTION

e[±] + p
$$\rightarrow$$
 (e[±]) + γ + X + _[LRG] + (p or pdiss)
 γ^* + p $\rightarrow \gamma$ + X + _[LRG] + (p or pdiss)
{ γ^* - quasi-real (Q²<1 GeV², 2>~10⁻⁵GeV²), no scattered electron observed}

 γ – isolated high E_T (> 5 GeV), X – hadrons or jets

EPS 2017, Aharon Levy

The outgoing Photon

EPS 2017, Aharon Levy

Photon candidates: groups of signals in cells in the BEMC. Each has a Z-position, Z_{CELL} . E-weighted mean of Z_{CELL} is Z_{Mean} .

Task: to separate **signal** photons from **background** coming from photon decays of neutral mesons.

In each bin of each measured physical quantity, fit for **photon signal +** hadronic bgd.

EPS 2017, Aharon Levy

July 6, 2017

Monte Carlo simulation

Uses the **RAPGAP** generator (H. Jung Comp Phys Commun 86 (1995) 147)

Based on leading order parton-level QCD matrix elements.

Some higher orders are modelled by initial and final state leading-logarithm parton showers.

Fragmentation uses the Lund string model as implemented in PYTHIA.

The H1 2006 DPDF fit B set is used to describe the density of partons in the diffractively scattered proton. For resolved photons, the SASGAM-2D pdf is used.

EPS 2017, Aharon Levy

Examples of lowest-order "resolved–Pomeron" diagrams by which diffractive processes ≡ iet direct Y may generate a prompt photon w y Mx **Direct** incoming photon gives all its energy to the P- remnant hard scatter $(x_{\gamma} = 1)$. rapidity gap { $x_{\gamma}^{\text{meas}} = \Sigma_{\gamma + \text{jet}}(E - p_z) / \Sigma_{\text{all EFOs}}(E - p_z)$ } **Resolved** incoming photon gives fraction x_{γ} of its energy. Y- remnant resolved = jet Mx lan v

P- remnant

rapidity

gap July 6, 2017

EPS 2017, Aharon Levy

Some kinematics:

x_{IP} = fraction of proton energy taken by Pomeron, measured as

 $\Sigma_{\text{all EFOs}} (E + p_z) / 2 E_p$

z_{IP} = fraction of Pomeron E+p_z
taken by photon + jet
measured as

 $\sum_{\gamma + jet} (E + p_z) / \sum_{all EFOs} (E + p_z)$

η_{max} = maximum pseudorapidity of observed outgoing particles (E > 0.4 GeV) (ignore forward proton).

Diffractive processes are characterised by a low value of η_{max} and/or low x_{IP} .

EPS 2017, Aharon Levy

Possible "direct Pomeron" interactions require a different type of diagram.

e.g.

Direct photon + "direct Pomeron"

Resolved photons also a possibility.

N.B. The proton may become dissociated in diffractive processes

EPS 2017, Aharon Levy

July 6, 2017

THE DATA

- 1) The forward scattered proton is not measured in these analyses.
- 2) Remove non-diffractive events: $\eta_{max} < 2.5$ and $x_{IP} < 0.03$ η_{max} is evaluated from ZEUS energy flow objects (EFOs), which combine tracking and calorimeter cluster information.
- 3) Remove remaining DIS events and Bethe-Heitler and DVCS events. Exclude events with identified electron or ≤ 5 EFOs
- 4) Remaining non-diffractive events neglected, could be 0-10% of our cross sections. Treated as a systematic.
- 5) **HERA I** data: use the FPC to remove much non-diffractive background. It also suppressed many proton dissociation events.

Use HERA-I data to measure total cross section. 82 pb⁻¹ **Use HERA-II data to study shapes of distributions.** 374 pb⁻¹

EPS 2017, Aharon Levy

THE DATA

Hard photon candidate:

- found with energy-clustering algorithm in BCAL: $E_{EMC}/(E_{EMC} + E_{HAD}) > 0.9$
- $E_T^{\gamma} > 5 \text{ GeV}$
- -0.7 < η^{γ} < 0.9 where $\eta \equiv$ pseudorapidity. (i.e. in ZEUS barrel calorimeter)
- Isolated. In the "jet" containing the photon candidate, the photon must contain at least 0.9 of the "jet" E_{T}

Jets

- use k_T-cluster algorithm
- -1.5 < η^{jet} < 1.8
- $E_T^{jet} > 4 \text{ GeV}$

Fit the x_{γ} distribution to direct and resolved RAPGAP components. A 70:30 mixture is found and used throughout.

EPS 2017, Aharon Levy

Plot $\mathbf{z_{IP}}^{\text{meas}}$ and compare with RAPGAP

Shape does not agree.

An excess is seen in the top bin.

Can reweight Rapgap to describe the shape.

Unreweighted RAPGAP here normalised to $z_{IP}^{meas} < 0.9$ data. Otherwise, unless stated, RAPGAP is normalised to the full plotted range of data.

The η_{max} distribution is described better by the reweighted Rapgap.

Red histogram shows what 10% of non-diffractive PYTHIA photoproduction (subject to present cuts) would look like. (Not added into the RAPGAP.)

EPS 2017, Aharon Levy

Results

Cross sections compared to RAPGAP normalised to total observed cross section. **Inner error bar is statistical.** Outer (total) is correlated across all points and includes normalisation and non-diffractive subtraction uncertainty.

Shape of data well described by RAPGAP. Most photons are accompanied by a jet.

EPS 2017, Aharon Levy

July 6, 2017

Using HERA-I data, integrated cross section for z_{IP}^{Meas} < 0.9 = 0.68 ±0.14 $^{+0.06}_{-0.07}$ pb

RAPGAP gives 0.68 pb. No allowance for proton dissociation which is $\sim 16 \pm 4\%$.

EPS 2017, Aharon Levy

July 6, 2017

Cross sections for region $z_{IP}^{meas} < 0.9$ **RAPGAP** is normalised to data in this region.

Cross sections for region $z_{IP}^{meas} \ge 0.9$ **RAPGAP** is normalised to data in this region.

Summary

ZEUS have measured **isolated ("prompt") photons in diffractive photoproduction**, with an accompanying jet.

Cross sections for a diffractive region defined by cuts on η_{max} and x_{IP} have been evaluated.

Most of the detected photons are accompanied by a jet.

The variable z_{IP}^{meas} shows a peak at high values that implies the presence of processes not currently modelled in RAPGAP. This gives evidence for a "direct-Pomeron" process Dominantly in the direct-photon channel.

In both regions of z_{IP}^{meas} the cross sections of the kinematic variables are well described in shape by RAPGAP.

EPS 2017, Aharon Levy

Backups

EPS 2017, Aharon Levy

July 6, 2017

η_{max} distribution for HERA II.

EPS 2017, Aharon Levy

July 6, 2017

July 6, 2017