Measurement of Jet Cross Sections in Deep-inelastic Scattering at HERA and Extraction of α_s at NNLO

Daniel Britzger

for the H1 Collaboration together with V. Bertone, J. Currie, C. Gwenlan, T. Gehrmann, A. Huss, J. Niehues, M. Sutton

> EPS Conference on High Energy Physics 2017 Venice, Italy 07.07.2017

Deep-inelastic ep scattering

Neutral current scattering (NC) $ep \rightarrow e'X$

Kinematic variables

Photon virtuality	Inelasticity
$Q^2 = -q^2 = -(k-k')^2$	$y = \frac{p \cdot q}{p \cdot k}$

HERA ep collider in Hamburg

Data taking periods

- HERAI: 1994 2000
- HERA II: 2003 2007
- √s = 300 or 319 GeV

H1 Experiment at HERA

H1 multi-purpose detector

- Asymmetric design
- Trackers:
 - silicon tracker, jet chambers, proportional chambers, ...
- Calorimeters
 - Liquid Argon sampling calorimeter
 - SpaCal: scintillating fiber calorimeter
- Superconducting magnet: 1.15T
- Muon detectors

Excellent experimental precision

- Overconstrained system in NC DIS
- Electron measurement: 0.5 1% scale uncertainty
- Jet energy scale: 1%
- Luminosity: 2.5%

Jet production in ep scattering

Jet measurements are performed in Breit reference frame

• Virtual boson collides 'head-on' with parton from proton

Jet measurements directly sensitive

- to α_s already at leading-order
- to gluon content of proton
- Trijet measurement at $O(\alpha_s^2)$ in leading-order

DIS jet production in NNLO

A bit of history

- 1973 asymptotic freedom of QCD [PRL 30(1973) 1343 & 1346]
- 1993 NLO studies of DIS jet cross sections [Phys. Rev. D49 (1994) 3291]
- 2016 NNLO corrections for DIS jets [Phys. Rev. Lett. 117 (2016) 042001], [arXiv:1703.05977]

Antenna subtraction

- Cancellation of IR divergences
 with local subtraction terms
- Construction of (local) counter terms
- Move IR divergences across different
 phase space multiplicities

Measurement of Jet Production Cross Sections in Deep-inelastic *ep* Scattering at HERA

H1 Collaboration Eur.Phys.J. C77 (2017) 4, 215 [arxiv:1611.03421]

Analysis strategy and kinematic range

Simultaneous measurement

- Inclusive jet, dijet trijet and NC DIS cross sections
- k_{T} jets with R=1, -1 < η^{lab} < 2.5

Regularised unfolding optimised for accurate descripton of relevant 'migrations'

- 'extended phase space'
- Account for statistical correlations
- Matrix: 3381 x 12800 elements

5.5 < Q² < 80 GeV² 4.5 < P_T^{jet} < 50 GeV

Dijet cross sections

Dijet cross sections

- as a function of Q^2 and $\langle p_T \rangle_2$
- $\langle P_T \rangle_2 = (P_T^{jet1} + P_T^{jet2})/2$ with: $P_T^{jet} > 4 \text{ GeV}$
- Ratio to NLO predictions shown

NLO (nlojet++, NNPDF30_nlo)

- reasonable description
- large scale uncertainties

approximate NNLO (JetVip, NNPDF30_nnlo)

improved shape description

NNLO (NNLOJET, NNPDF30_nnlo)

- good description data
- NNLO predictions with reduced scale uncertainties than NLO

Inclusive jet cross sections

Inclusive jet cross sections

- low Q²: 4.5 < P_T < 50 GeV (new!)
- high Q²: 5 < P_T < 7 GeV (new!)
- high Q²: $7 < P_T < 50 \text{ GeV}$ (EPJ C75 (2015) 2, 65)
- NLO with reasonable description within (scale) uncertainties
- aNNLO with somewhat improved shape

NNLO predictions

- NNLO provides improved shape and normalisation description
- NNLO with reduced scale uncertainties

Also normalised (inclusive) jet cross sections measured -> see backup

Trijet cross sections

Trijet cross sections

- Leading order $O(\alpha_s^2)$
- No NNLO predictions available yet

- Data well described by NLO (nlojet++)
- Data typically with smaller uncertainties than NLO theory
- Similar trend as dijets
 - low scales: NLO undershoots data
 - high $\langle P_T \rangle$: NLO overshoots data
- Normalised trijets also measured

Determination of α_s(m_z) in next-to-next-to-leading order QCD using H1 jet cross section measurements

H1prelim-17-031 H1 Collaboration together with V. Bertone, J. Currie, C. Gwenlan, T. Gehrmann, A. Huss, J. Niehues, M. Sutton [available at https://www-h1.desy.de/publications/H1preliminary.short_list.html]

Why α_s ?

Strong coupling α_s enters in the calculation of every process that involves the strong interaction

PDG world average (2016)

- $\alpha_s(m_z) = 0.1181 \pm 0.0011$ [PDG2016]
- ~0.9% relative uncertainty

Uncertainty on α_s

- Important for precision phenomenology
- Notable examples: Higgs production cross sections, branching ratios

Jet measurements

- Direct constraint on α_{s}
- So far no NNLO results available

Inclusive jet and dijet cross sections at H1

Inclusive jet cross sections

- Measurements at HERA-I & HERA-II
- low-Q² and high-Q²
- Differerent √s

Dijet cross sections

- as a function of Q^2 and $\langle p_T \rangle_2$
- HERA-I & HERA-II
- low-Q² and high-Q²
- Different √s

Eur.Phys.J.C65 (2010) 363 Eur.Phys.J.C67 (2010) 1 Eur.Phys.J.C19 (2001) 289 Eur.Phys.J.C75 (2015) 2, 65 Eur.Phys.J.C77 (2017) 4, 215

All H1 inclusive jet and dijet data is employed for α_s determination in NNLO

EPS17, July 2017, Venice

Daniel Britzger – H1 jets and α_s at NNLO

$\alpha_s(m_z)$ dependence of cross sections

Scale dependence of α_s fit

• α_s results as a function of scale factors to nominal scale

 $\mu_R^2 = \mu_F^2 = Q^2 + P_T^2$

- μ_r variation with more impact than μ_f
- χ² values as a technical parameter
 -> not intended to be a parabolas
- χ^2 values increase for large scale factors
 - -> large scale factors disvafored -> A-priori chosen scale appears to be reasonable

Scale choice for α_{s} fit

• Study various definition for scales (μ_r , μ_f) built from Q² and p_T p_T denotes: p_T^{jet} or $< p_T >$

α_s results and χ^2 values

- Spread of results covered by scale uncertainty (variation by 0.5 & 2)
- χ^2 values are all reasonable for different choices

NLO vs. NNLO

- Reduced scale uncertainty in NNLO
- NNLO with reduced scale-dependence of α_s and χ^2 values
- NLO with larger χ^2 values

NNLO with reduced scale dependence

Strong coupling in NNLO from H1 jets

Test running of strong coupling in NNLO

- Repeat fits to groups of data points
- Theory uncertainty often larger than
 experimental uncertainty
- Confirmation of 'running' between 7–90 GeV
- Consistency with other extractions
 and with other processes
- Scale uncertainty is largest uncertainty for most intervals
- NNLO with small scale uncertainty (also) at lower scales

Summary

New measurement of jet cross sections in NC DIS [EPJ C77 (2017) 4, 215]

- Inclusive jet, dijet and trijet cross sections
- Normalised jet cross sections with reduced experimental uncertainty
- Data well described by (new) NNLO predictions
- NNLO corrections are important at lower scales

Strong coupling constant determined in NNLO [H1prelim-17-031]

• Explore all H1 inclusive jet and dijet cross section measurements (1995 – 2007)

$$\alpha_{\rm s}(m_{\rm Z}) = 0.1157(6)_{\rm exp} \binom{+31}{-26}_{\rm theo}$$

- High experimental precision & competitive theoretical precision
- Probe running of α_s over one order of magnitude with H1 jet data
- https://www-h1.desy.de/publications/H1preliminary.short_list.html Preprint ready in 5-7 weeks

Precision QCD phenomenology with jets in NNLO accuracy

Fruitful collaboration of theoreticians and experimentalists

H1 in collaboration with V. Bertone, J. Currie, T. Gehrmann, C. Gwenlan, A. Huss, J. Niehues, M. Sutton

Fit methodology

α_s from χ_2 -minimisation

- $\alpha_s(m_z)$ is a free parameter to NNLO theory prediction σ_i
- χ^2 calculated as: (ς =Data, σ_i =NNLO, V=covariance matrices)

$$\chi^2 = \sum_{i,j} \log \frac{\varsigma_i}{\sigma_i} (V_{\text{exp}} + V_{\text{had}} + V_{\text{PDF}})_{ij}^{-1} \log \frac{\varsigma_j}{\sigma_j}$$

Perform fits to

- All 9 individual data sets
- All 5 inclusive jet data sets (137 data points)
- All 4 dijet data sets (103 data points)
- All H1 jet data taken together (denoted as 'H1 jets') (exclude HERA-I dijet data as correlations to inclusive jets are not known)
- Data points at a similar scale $\boldsymbol{\mu}$
- Data points above a certain scale value μ_{min}

Additional cuts

- remove data below μ < 2m_b, to avoid effects from heavy quark masses
- drop HERA-I, low-Q² dijets with $< p_T > < 7$ GeV, because of IR issue

Selection of data sets

Kinematic range of H1 jet data					
Data set	\sqrt{s}	int. \mathcal{L}	DIS kinematic	Inclusive jets	Dijets
[Ref.]	[GeV]	$[\mathrm{pb}^{-1}]$	range		$n_{\rm jets} \ge 2$
$300{ m GeV}$	300	33	$150 < Q^2 < 5000 \mathrm{GeV}^2$	$7 < P_{\rm T}^{\rm jet} < 50 {\rm GeV}$	$P_{\mathrm{T}}^{\mathrm{jet}} > 7 \mathrm{GeV}$
[1]			0.2 < y < 0.6		$8.5 < \langle P_{\rm T} \rangle < 35 {\rm GeV}$
HERA-I	319	43.5	$5 < Q^2 < 100 \mathrm{GeV}^2$	$5 < P_{\rm T}^{\rm jet} < 80 {\rm GeV}$	$5 < P_{\rm T}^{\rm jet} < 50{\rm GeV}$
[2]			0.2 < y < 0.7		$5 < \langle P_{\rm T} \rangle < 80 {\rm GeV}$
					$(\langle P_{\rm T} \rangle > 7 {\rm GeV})^*$
					$m_{12} > 18 \mathrm{GeV}$
HERA-I	319	65.4	$150 < Q^2 < 15000 \mathrm{GeV}^2$	$5 < P_{\rm T}^{\rm jet} < 50 {\rm GeV}$	-
[3]			0.2 < y < 0.7		
HERA-II	319	290	$5.5 < Q^2 < 80 \mathrm{GeV}^2$	$4.5 < P_{\rm T}^{\rm jet} < 50 {\rm GeV}$	$P_{\rm T}^{\rm jet} > 4 {\rm GeV}$
[4]			0.2 < y < 0.6		$5 < \langle P_{\rm T} \rangle < 50 {\rm GeV}$
HERA-II	319	351	$150 < Q^2 < 15000 \mathrm{GeV}^2$	$5 < P_{\rm T}^{\rm jet} < 50 {\rm GeV}$	$5 < P_{\rm T}^{\rm jet} < 50 {\rm GeV}$
[5, 4]			0.2 < y < 0.7		$7 < \langle P_{\rm T} \rangle < 50 {\rm GeV}$
					$m_{12} > 16 \mathrm{GeV}$

Inclusive jet cross sections by H1

Inclusive jet cross sections

- $d\sigma/dQ^2dP_T^{jet}$
- 300 GeV, HERA-I & HERA-II
- low-Q² (<100 GeV²) and high-Q² (>150 GeV²) regions

Consistency

- kt-algorithm, R=1
- -1.0 < η < 2.5
- P_{T} ranges from 4.5 to 50 GeV

EPS17, July 2017, Venice

Daniel Britzger – H1 jets and α_s at NNLO

Dijet cross section by H1

Dijet cross sections

- $d\sigma/dQ^2d < p_T >$
- 300 GeV, HERA-I & HERA-II
- low-Q² and high-Q²

Dijet definitions

- $< p_T >$ greater than 5,7 or 8.5 GeV
- P_{τ} jet greater 4, 5 or 7 GeV
- Asymmetric cuts on $p_{\mathsf{T}^{jet1}}$ and $p_{\mathsf{T}^{jet2}}$
- M₁₂ cut for two data sets

Earlier studies

• All inclusive jet and dijet data have been employed for α_s extractions in NLO previously

-> Data and uncertainties well-understood -> NNLO theory is new

HERA-I high-Q² Dijet cross sections not statistically independent from HERA-II analysis *Eur.Phys.J.C65* (2010) 363

H1 data
 NLO
 had

HERA-I low-Q²

20 - 0² - 30 Gel

40 < Q² < 100 GeV

Eur.Phys.J.C67 (2010) 1

HERA-II low-Q²

arXiv:1611.03421

EPS17, July 2017, Venice

Daniel Britzger – H1 jets and α_s at NNLO

Scale dependence of NNLO cross sections

Scale dependence of NNLO cross sections

• Study simultaneous multiplicative variation of renormalisation and factorisation scale

Scale dependence

- At lower scales
 - NNLO reduced scale dependence w.r.t. NLO
 - Still relevant scale dependence in NNLO
- At higher scales
 - Scale dependence reduced w.r.t. NLO
- μ_f dependence small
- Inclusive jets with higher scale dependence than dijets at lower scales

α_s dependencies separately fitted

Fits with two free α_s parameters in calculation

 $\sigma_i = f(\alpha_{\rm s}^f(m_Z)) \otimes \hat{\sigma}_k(\alpha_{\rm s}^{\hat{\sigma}}(m_Z)) \cdot c_{\rm had}$

- Separate fits for low- and high- $\!\mu$ data points
- Fits to Inclusive jet or dijet data

Results

- Most sensitivity arises from matrix elements
- Best-fit $\alpha_{s}\text{-values}$ in PDF's and ME's are consistent
- Significant anti-correlation at lower scales -> Increased sensitivity if both α_s -values identified to be identical

Dependence on the PDF

PDF is external input NNLO calculation

Choice of PDF set

- Different PDF groups: different input data sets, PDF parameterisations, model parameters, fit methodology, etc...
- Different PDFs are consistent

Choice of α_s as input to PDF

- $\alpha_s(m_z)$ important input parameter to PDF fit
- Relevant correlation with fitted results
- Differences among different PDF sets

Additional PDF uncertainties on result

- 'PDFset': 1/2*max(Δ(all PDFs))
- 'PDFα_s': 1/2 (Δα_s=0.004)

PDF dependence and scale choice

• Fits to 'H1 jets' (inclusive jets & dijet data taken together)

Running from inclusive jets and dijets

Test running of strong coupling

- Repeat fits to groups of data points at similar scales
- All fits with good $\chi^{\scriptscriptstyle 2}$
- Study assumes running to be valid only within limited range covered by an interval

Results

- Theory uncertainty often larger than experimental uncertainty
- Consistency of inclusive jets and dijets
- Consistency also down to lower scales (while otherwise data with μ <2m_B is excluded)
- Scale uncertainty almost 'constant' at all scales
- -> NNLO with small scale uncertainty (also) at lower scales

Confirmation of 'running' between 7-90 GeV

NNLO cross sections

Ratio of data to NNLO predictions

- Using: $\alpha_s(m_z) = 0.1157$
- Blue band: NNLO scale uncertianties
- Excluded data points (open symbols)
 - μ < 2m_b
 - HERA-I low-Q2 dijets: 5 < <pT> < 7 GeV
 -> because of symmetric cuts
 -> Issues with NNLO

Conclusions

- Overall good agreement of NNLO predictions to H1 data
- Consistency of data
- All phase space regions in agreement with NNLO
 - -> also confirmed by dedicated χ^2 studies

	Extended phase space for unfolding	Cross section phase space
NC DIS	$Q^2 > 3 \text{ GeV}^2$	5.5 < Q ² < 80 GeV ²
	y > 0.08	0.2 < y < 0.6
(inclusive) jets	$P_{T}^{jet} > 3 \text{ GeV}$	$P_{T}^{jet} > 4.5 \text{ GeV}$
	$-1.5 < \eta^{lab} < 2.75$	$-1.0 < \eta^{lab} < 2.5$
Dijet and trijet		$P_{T}^{jet} > 4 \text{ GeV}$
	$< P_{T}^{jet} > 3 \text{ GeV}$	<p<sub>T^{jet}> > 5 [5.5] GeV</p<sub>

Phase space of measurement and phase space of unfolding

Predictions	NLO	aNNLO	NNLO
Program for jet cross sections	nlojet++	JetViP	NNLOJET
pQCD order	NLO	approximate NNLO	NNLO
Calculation detail	Dipole subtraction	Phase space slicing	Antenna subtraction
		NNLO contributions	
		from unified threshold	
		resummation formalism	
Program for NC DIS	QCDNUM	APFEL	APFEL
Heavy quark scheme	ZM-VFNS	FONLL-C	FONLL-C
Order	NLO	NNLO	NNLO
PDF set	NNPDF3.0_NLO	NNPDF3.0_NNLO	NNPDF3.0_NNLO
$\alpha_s(M_Z)$	0.118	0.118	0.118
Hadronisation corrections	Djangoh and Rapgap		
Available for			
(Normalised) Inclusive jet	~	\checkmark	\checkmark
(Normalised) Dijet	\checkmark	\checkmark	\checkmark
(Normalised) Trijet	~		

Summary of predictions

Regularised unfolding

Regularised unfolding using TUnfold

• Calculate unfolded distribution *x* by minimising

$$\chi^{2}(x,\tau) = (y - Ax)^{T} V_{y}^{-1} (y - Ax) + \tau L^{T} L$$

- Linear analytic solution
- Linear error propagation
- Statistical correlations are considered in V_y

Simultaneous unfolding of Inclusive jet, Dijet, Trijet, NC DIS

- Statistical correlations are considered
- Matrix constituted from O(106) entries
 - Two generators used
 - Difference between the two -> model uncertainty
- Up to 6 variables considered for migrations
- 'detector-level fake jets' (or events) are constrained with NC DIS data

X Υ Α τL ²	Hadron leve Detector lev Covariance Migration m Regularisati	el rel matrix atrix ion term	JINST 7 (2	2012) T10003
	Migration Matrix			
Ë	$\varepsilon_{\rm E}$ - β_1 ,- β_2 - β_3	<i>ε</i> ₁	<i>E</i> 2	<i>E</i> 3
	Reconstructed Trijet events which are not generated as Trijet event			Trijet Q ² , <p<sub>T>₃, y, Trijet-cuts</p<sub>
tor level	Reconstructed Dijet events which are not generated as Dijet event		$\begin{array}{c} Dijet\\ \mathcal{Q}^2, < p_{T} >_{2^*} y,\\ Dijet-cuts \end{array}$	
Detec	Reconstructed jets without match to generator level	Incl. Jet $p_{T}^{\text{jet}}, Q^2, y, \eta$		
	$NC_{\mathcal{Q}^2, y}^{NC}$		EP	J C75 (2015) 2

Unfolding matrix and resulting correlations

Dijet cross sections

Dijet cross sections

- as a function of Q^2 and $\langle p_T \rangle_2$
- $< P_T >_2 = (P_T^{jet1} + P_T^{jet2})/2$ with: $P_T^{jet} > 4 \text{ GeV}$

Comparison to Predictions

- NLO (nlojet++, NNPDF30_nlo)
- approximate NNLO (JetVip, NNPDF30_nnlo)
- NNLO (NNLOJET, NNPDF30_nnlo)

Predictions provide overall good description of data

Normalised dijet cross sections

 Normalisation w.r.t. NC DIS cross section in given Q² range

$$\sigma_i^{\text{norm}} = \frac{\sigma_i}{\sigma_{i_q}^{\text{NC}}}$$

- (partial) cancellation of exp. uncertainties smaller benefit at lower Q²
- Overall good description by NLO, aNNLO and NNLO predictions
- NNLO slightly overshoots data
 -> Probably caused by normalisation of NC DIS predictions in NNLO

Normalised jet cross sections

Normalised jet cross sections

 Normalised to: <u>'inclusive neutral-current DIS cross</u> <u>section</u>' in respective Q² bin

Advantages

- Reduced experimental uncertainties
- Cancellation of normalisation uncertainty

NC DIS predictions

- NLO (ZM-VFNS) and NNLO (FONLL-C) predictions provide a good description of the data
- PDFs are fitted to NC DIS cross sections

Inclusive neutral-current DIS cross sections

Reminder: inclusive jets @ high-Q²

Eur. Phys. J. C75 (2015) 2

- H1 HERA-II jet cross sections at <u>high-Q</u>²
- Inclusive jet, dijet and trijet cross sections
- 150 < Q² < 15 000GeV²

Inclusive jets in range

• 7 < p_T < 50 GeV

Recent studies showed

- Inclusive jets are well measurable down to $p_{\scriptscriptstyle T}$ $\sim 4~GeV$
- The original 'high-Q² '-analysis contained a cross section bin for inclusive jets for $5 < p_T < 7 \text{ GeV}$

Extension to low- p_{τ} : 5 < p_{τ} < 7 GeV

- for each Q² range
- Absolute and normalised cross sections

Normalised inclusive jet cross sections

Normalised inclusive jets

- Normalisation w.r.t. inclusive NC DIS cross section in respective Q² bin
- Significant reduction of uncertainties at higher values of *Q*²

Normalised jet cross sections

- Increase as a function of Q^2 for a given P_{τ} interval
- Q² and p_T are both important scales for inclusive jet production

Determination of the strong coupling $\alpha_s(M_z)$

