Precision QCD measurements at HERA

Daniel Britzger for the H1 and ZEUS collaborations

Determination of the Fundamental Paramters in QCD Workshop Mainz, Germany 08.03.2016

Deep-inelastic scattering

Factorization in ep collisions

$$\sigma_{ep \to eX} = f_{p \to i} \otimes \hat{\sigma}_{ei \to eX}$$

 $xf_{p \rightarrow i}$ = quark/gluon momentum density in proton: Parton density functions (PDFs)

PDFs are not observables – only structure functions are

Measuring these cross sections allows indirect access to the universal PDFs, which are also valid for pp collisions

Structure functions

$$\frac{d\sigma_{NC}^{\pm}}{dxdQ^2} = \frac{2\pi\alpha^2}{x} \left[\frac{1}{Q^2}\right]^2 \left[Y_+\tilde{F}_2 \mp Y_-x\tilde{F}_3 - y^2\tilde{F}_L\right] \qquad Y_{\pm} = 1 \pm (1-y)^2$$
$$\frac{d\sigma_{CC}^{\pm}}{dxdQ^2} = \frac{G_F^2}{4\pi x} \left[\frac{M_W^2}{M_W^2 + Q^2}\right]^2 \left[Y_+\tilde{W}_2^{\pm} \mp Y_-x\tilde{W}_3^{\pm} - y^2\tilde{W}_L^{\pm}\right]$$

DIS cross sections are expressed in terms of structure functions Dominant contribution from F_2 structure function

 $\tilde{F}_2 \propto \sum (xq_i + x\overline{q}_i)$

Relevant at high $Q^2 \sim M_{Z^2}$

 $x\tilde{F}_3 \propto \sum (xq_i - x\overline{q}_i)$

Sensitive at low Q² and high y

 $\tilde{F}_L \propto \alpha_s \cdot xg(x,Q^2)$

Measured cross sections are reduced cross sections

Measurement is a direct determination of the structure functions

HERA kinematic plane

HERA data cover a wide kinematic region of *x*,*Q*²

NC measurements

- F₂ dominates most of Q² reach
- xF_3 contributes to EW regime
- $F_{\scriptscriptstyle L}$ contributes only at highest y
- CC measurements
 - W_2 and xW_3 contribute equally
 - W_L only at high y

LHC: largest mass states at large x

For central production $x_1 = x_2$

M = x*√s

i.e. M > 1TeV probes x > 0.1

High-x predictions rely on

- data (DIS / fixed target)
- sum rules
- behaviour of PDFs as $x \rightarrow 1$

HERA operation

HERA-I operation 1993-2000

- E_e = 27.6 GeV
- E_p = 820 / 920 GeV
- √s = 301 & 318 GeV
- int. Lumi. ~ 110 pb⁻¹ per experiment

HERA-II operation 2003-2007

- E_e = 27.6 GeV
- E_p = 920 GeV
- √s = 318 GeV
- int. Lumi. ~ 330 pb-1 per experiment
- Longitudinally polarised leptons

Low-Energy Run 2007

- E_e = 27.6 GeV
- E_p = 575 & 460 GeV
- √s = 225 & 251 GeV
- Dedicated $\mathsf{F}_{\scriptscriptstyle L}$ measurement

H1 and ZEUS

Two multi-purpose collider experiments: H1 and ZEUS

High statistics

• Luminosity: approx. 0.5 fb⁻¹ per experiment

Excellent control over experimental uncertainties

- Overconstrained system in DIS
- Electron measurement: 0.5 1% scale uncertainty
- Jet energy scale: 1%
- Trigger and normalization uncertainties: 1-2 %
- Luminosity: 1.8 2.5%

HERA structure function data

Data Set		x _{Bj} C	Grid	Q^2 [GeV	V ²] Grid	L	e^{+}/e^{-}	\sqrt{s}	$x_{\rm Bj}, Q^2$ from	Ref.		
		from	to	from	to	pb ⁻¹		GeV	equations			
HERA I $E_p = 820$ GeV and $E_p = 920$ GeV data sets												
H1 svx-mb[2]	95-00	0.000005	0.02	0.2	12	2.1	e^+p	301, 319	13,17,18	[3]		
H1 low Q^2 [2]	96-00	0.0002	0.1	12	150	22	e^+p	301, 319	13,17,18	[4]		
H1 NC	94-97	0.0032	0.65	150	30000	35.6	e^+p	301	19	[5]		
H1 CC	94-97	0.013	0.40	300	15000	35.6	e^+p	301	14	[5]		
H1 NC	98-99	0.0032	0.65	150	30000	16.4	e^-p	319	19	[6]		
H1 CC	98-99	0.013	0.40	300	15000	16.4	e^-p	319	14	[6]		
H1 NC HY	98-99	0.0013	0.01	100	800	16.4	e^-p	319	13	[7]		
H1 NC	99-00	0.0013	0.65	100	30000	65.2	e^+p	319	19	[7]		
H1 CC	99-00	0.013	0.40	300	15000	65.2	e^+p	319	14	[7]		
ZEUS BPC	95	0.000002	0.00006	0.11	0.65	1.65	e^+p	300	13	[11]		
ZEUS BPT	97	0.0000006	0.001	0.045	0.65	3.9	e^+p	300	13, 19	[12]		
ZEUS SVX	95	0.000012	0.0019	0.6	17	0.2	e^+p	300	13	[13]		
ZEUS NC [2] high/low Q^2	96-97	0.00006	0.65	2.7	30000	30.0	e^+p	300	21	[14]		
ZEUS CC	94-97	0.015	0.42	280	17000	47.7	e^+p	300	14	[15]		
ZEUS NC	98-99	0.005	0.65	200	30000	15.9	$e^{-}p$	318	20	[16]		
ZEUS CC	98-99	0.015	0.42	280	30000	16.4	$e^{-}p$	318	14	[17]		
ZEUS NC	99-00	0.005	0.65	200	30000	63.2	e^+p	318	20	[18]		
ZEUS CC	99-00	0.008	0.42	280	17000	60.9	e^+p	318	14	[19]		
HERA II $E_p = 920 \text{GeV}$ dat	ta sets			I			_			1		
H1 NC ^{1.5} <i>p</i>	03-07	0.0008	0.65	60	30000	182	e^+p	319	13, 19	[8] ¹		
H1 CC ^{1.5} <i>p</i>	03-07	0.008	0.40	300	15000	182	e^+p	319	14	[8]1		
H1 NC ^{1.5} <i>p</i>	03-07	0.0008	0.65	60	50000	151.7	$e^{-}p$	319	13.19	[8]1		
H1 CC $^{1.5p}$	03-07	0.008	0.40	300	30000	151.7	$e^{-}p$	319	14	[8] ¹		
H1 NC med $Q^2 * y.5$	03-07	0.0000986	0.005	8.5	90	97.6	e^+p	319	13	[10]		
H1 NC low $O^2 * y.5$	03-07	0.000029	0.00032	2.5	12	5.9	e^+p	319	13	[10]		
ZEUS NC	06-07	0.005	0.65	200	30000	135.5	e^+p	318	13.14.20	[22]		
ZEUS CC $^{1.5p}$	06-07	0.0078	0.42	280	30000	132	$e^+ n$	318	14	[23]		
ZEUS NC ^{-1.5}	05-06	0.005	0.65	200	30000	169.9	$e^{-}p$	318	20	[20]		
ZEUS CC ^{1.5}	04-06	0.015	0.65	280	30000	175	$e^{-}p$	318	14	[21]		
ZEUS NC nominal *9	06-07	0.000092	0.008343	200	110	44 5	e^+p	318	13	[24]		
ZEUS NC satellite * ^y	06-07	0.000071	0.008343	5	110	44 5	e^+p	318	13	[24]		
HERA II $E_n = 575$ GeV dat	ta sets	0.000071	0.00000.00	5	110	1110	υp	510	10	[2]]		
H1 NC high Q^2	07	0.00065	0.65	35	800	54	$e^+ n$	252	13 19	[9]		
H1 NC low Q^2	07	0.0000279	0.0148	15	90	5.9	$e^+ p$	252	13			
ZEUS NC nominal	07	0.000147	0.013349	7	110	7.1	e^+p	251	13	[24]		
ZEUS NC satellite	07	0.000147	0.013349	5	110	7.1	e^+p	251	13	[24]		
LEDS IN Satemic 07 0.000123 0.015349 3 110 7.1 e^{-p} 231 13 [24] LEDA IN $E = -460$ CaV data sets												
H1 NC high O^2	07	0.00081	0.65	25	800	11.0	a ⁺ n	225	12 10	[0]		
H1 NC low O^2	07	0.0000349	0.05	15	00	12.2	$e^{+}p$	225	13, 19			
TEUS NC nominal	07	0.0000348	0.0140	1.5	90	12.2	e^{p}	225	13	[10]		
ZEUS NC noniniai ZEUS NC satellite	07	0.000184	0.010080	5	110	13.9	e^{p}	225	13	[24]		
ZEUS NU salenne	0/	0.000143	0.010080	3	110	13.9	$e^{\cdot}p$	223	15	[24]		

H1 & ZEUS have published all datasets

- HERA-I
- HERA-II at high Q²
- HERA-II at reduced centre-ofmass energies

Data combination

- 41 datasets are combined
 - NC & CC cross sections
 - e+p & e-p scattering
 - 4 values of √s
- 2927 input data points
- 1307 combined points
- data points are swum to <u>common (x,Q²)-grid</u> points:

 $\sigma(x_{grid}, Q_{grid}^2) = \frac{\sigma_{model}(x_{grid}, Q_{grid}^2)}{\sigma_{model}(x_{meas}, Q_{meas}^2)} \cdot \sigma_{meas}(x_{meas}, Q_{meas}^2)$

The usage of different reconstruction techniques and the differences in the strengths of the detector components of the two experiments lead to a <u>substantial reduction of</u> <u>the systematic uncertainties</u> of the combined cross sections.

H1 & ZEUS data combination

Combination of all H1 and ZEUS datasets

- 2927 data points \rightarrow 1307 combined points
- HERAAverager package used
- Correlations of systematic uncertainties fully considered
- Minimisation procedure based on χ^2 definition

$$\chi^{2}_{\exp,ds}(\boldsymbol{m},\boldsymbol{b}) = \sum_{i} \frac{\left[m^{i} - \sum_{j} \gamma^{i}_{j} m^{i} b_{j} - \mu^{i}\right]^{2}}{\delta^{2}_{i,\text{stat}} \mu^{i} \left(m^{i} - \sum_{j} \gamma^{i}_{j} m^{i} b_{j}\right) + \left(\delta_{i,\text{uncor}} m^{i}\right)^{2}} + \sum_{j} b^{2}_{j}$$

Combination results

- χ^2 of combination: 1687 for 1620 degrees of freedom
- Pull values well distributed around zero with RMS ~ 1
- <u>Great confirmation of consistency of datasets !</u>

Procedural uncertainties

- Multiplicative vs. additive nature
- Correlation in photoproduction background
- Large pulls in corr. syst. uncert.

Entries

Combined NC DIS cross sections

Combined HERA data based on approx. 1fb-1

- Only 6 and 4 selected *x*-bins shown here for $\sqrt{s} = 318$ GeV
- High precision reached over large kinematic range: Better than 1.3% for Q² < 400 GeV²

CC DIS and low-Q² cross sections

Combined charged current DIS cross sections for $\sqrt{s} = 318$ GeV

• Large improvement in statistical limitations of individual datasets

Further kinematic regions

- Great improvements also for $\sqrt{s} = 225$, 251 and 301 GeV
- Very low-Q² and low-x data for $\sqrt{s} = 301$ and 318 GeV
 - $Q^2 > 0.045 \text{ GeV}^2$ and $x_{Bj} > 6x10^{-7}$
 - Interesting for dipole and saturation models

PDF extraction from data: HERAPDF2.0

HERAPDF approach

- Final combined e[±]p NC and CC data are very precise, so to allow the extraction of the parton densities
- DGLAP Analysis based only on HERA data
- PDFs parameterised at arbitrary starting scale $Q_0^2 = 1.9 \text{ GeV}^2$

Minimise χ^2 function with respect to PDF parameters

- Perturbative QCD evolution allows PDFs to be determined at any other scale Q²
- Calculate theory cross section at given x,Q² of measurement
- Usage of momentum/counting sumrules help to constrain parameter space

The use of a single consistent data sample allows a more rigorous treatment of the experimental uncertainties

• No fixed target data, therefore no need for heavy-target/deuterium corrections

HERAPDF2.0 NLO and NNLO

Fits performed in LO, NLO and NNLO

- NLO: χ²/ndf = 1357 / 1131
- NNLO: χ²/ndf = 1363 / 1131

Differences between NLO and NNLO fit

- gluon ceases to raise at low-x
- sea at low-x somewhat steeper w.r.t. NLO

HERAPDF2.0 uncertainties

Experimental Uncertainties	Variation	Standard Value	Lower Limit	Upper Limit	
Hessian method uses 14 eigenvector pairs	$Q_{\rm min}^2$ [GeV ²]	3.5	2.5	5.0	
Standard definition $\Delta \chi^2 = 1$ for 88% CL effor bands	$Q_{\rm min}^2$ [GeV ²] HiQ2	10.0	7.5	12.5	
Model Assumptions	$M_c(\text{NLO})$ [GeV]	1.47	1.41	1.53	
Variation of charm and bottom quark masses M _c , M _b	M_c (NNLO) [GeV]	1.43	1.37	1.49	
Variation of Q ² minimum cut used on input data Q ² _{min}	M_b [GeV]	4.5	4.25	4.75	
	f_s	0.4	0.3	0.5	
Parameterisation Uncertainties	$\alpha_s(M_Z^2)$	0.118	_	_	
Variation of Q_0^2	μ_{f_0} [GeV]	1.9	1.6	2.2	
variation of it using additional 15th parameter					

 $\alpha_{s}(M_{7})$ fixed but series of PDFs provided for large range: 0.110 to 0.130

NC cross sections & HERAPDF2.0

Neutral Current e[±]p

High Q² NC & CC Cross Sections

High Q², high-x cross sections

- Difference in NC at high-x for e^+ and e^- due to xF_3 and Z-boson exchange
- CC e⁺p suppressed at high-x due to (1-y)² helicity suppression of quarks
- CC e-p unaffected as helicity suppression applies to anti-quarks

HERAPDF2.0 describes high-x data well for both NC and CC channels

χ^2 and Q^2_{min} study and heavy flavors

Minimum value of Q² for data to ensure that pQCD is applicable

- HERAPDF2.0: $Q_{min}^2 = 3.5 \text{ GeV}^2$
- Consider variation of this cut: χ² decreases with increase of Q²
- NLO and NNLO behave similarly
- Low-Q² cuts also removes low-x region: Region where non-pert. effects, ln(1/x)resummation, saturation become important
- Fits for Q²_{min} = 10 GeV² also released as PDF tables

Heavy flavor scheme

- Treating F_L to $O(\alpha_s)$ (the same order as F_2) yields better χ^2 than treating F_L to $O(\alpha_s^2)$
- RT-Opt NNLO is marginally worse than NLO
- FONLL NNLO is worse than NLO

Jet production in DIS

Jet production in leading-order pQCD

Jet measurements are perfomed in Breit-frame

virtual boson collides head on with a parton from the proton

Inclusive jets

Count each jet of an event

Dijet and trijet

Count events with two/three jet event structure

Observable: average transverse momentum of two/three jets

Normalised jets

Normalise all jet data w.r.t. inclusive NC DIS cross section

EPJ C75 (2015) 2, 65 ZEUS-prel-14-008

Jet production in DIS

Normalised and non-normalised jet data

- Data well described by NLO theory (nlojet++)
- Data in general with smaller uncertainties than NLO from scale variations
- Differences between different PDF sets typically small

Data used to extract strong coupling constant

- χ^2 minimisation of α_s in coefficient function
- Dependencies of the PDF on α_{s} considered as uncertainties

 $\alpha_s(M_Z)|_{k_T} = 0.1165 \ (8)_{exp} \ (5)_{PDF} \ (7)_{PDFset} \ (3)_{PDF(\alpha_s)} \ (8)_{had} \ (36)_{\mu_r} \ (5)_{\mu_f}$ = 0.1165 \ (8)_{exp} \ (38)_{pdf,theo} .

Eur. Phys. J. C73 (2013) 2311

Charm production in DIS

Charm production at HERA

- Charm is produced in virtual photon-gluon fusion
- Charm production directly sensitive to the gluon density xg(x)

Combined charm cross sections

• Whealth of HERA charm data combined into common charm cross sections

$$\frac{\mathrm{d}^2 \sigma^{c\bar{c}}}{\mathrm{d}x \mathrm{d}Q^2} = \frac{2\pi \alpha^2 (Q^2)}{xQ^4} \left(\left[1 + (1-y)^2 \right] F_2^{c\bar{c}}(x,Q^2) - y^2 F_L^{c\bar{c}}(x,Q^2) \right)$$

Eur. Phys. J. C73 (2013) 2311 H1prelim-14-071, ZEUS-prel-14-006

Extraction of charm mass running

Extraction of charm mass

- Simultaneous fit of combined charm data
 + inclusive HERA-I DIS data
- Different heavy-flavor schemes explored
- FFNS ABM scheme defines charm mass in MSbar scheme

 $m_c(m_c) = 1.26 \pm 0.05_{exp} \pm 0.03_{mod} \pm 0.02_{par} \pm 0.02_{\alpha s} GeV$

Charm mass running

- extract $m_c(m_c)$ separately for 6 kinematic ranges in $\mu^2 = Q^2 + 4m_c^2$
- use appropriate PDF set for each mass (from inclusive DIS data only)
- fit charm data + HERA-I incl. data
- Translate back to $m_c(\mu)$ using LO formula consistent with NLO MS QCD fit (OpenQCDrad, Alekhin et al.)

Determination of beauty mass

Beauty cross sections

- Measured of HF jets using secondary vertices + lifetime tag
- Good description of data by massive NLO QCD predictions

Extraction of b-quark mass

- QCD fit (FFNS) of HERA-I incl. data
 + ZEUS beauty data
- m_b as free parameter

 $m_b(m_b) = 4.07 \pm 0.14 \,(\text{fit})^{+0.01}_{-0.07} \,(\text{mod.})^{+0.05}_{-0.00} \,(\text{param.})^{+0.08}_{-0.05} \,(\text{theo.}) \,\text{GeV}$

Charm and jet data in HERAPDF2.0

Charm and bottom data used in HERAPDF2.0 QCD analysis

- Charm and bottom data used to determine best quark-mass parameters
- Values of charm and bottom masses used DGLAP fits determined as χ^2 scan of NLO and NNLO fits

Charm and jet data in HERAPDF2.0

a)

Additional datasets in QCD analysis

- Combined charm cross sections
- H1 norm. multijets at high Q² (HERA-II)
- H1 multijets at low Q² (HERA-I)
- H1 incl. jets at high Q² (HERA-I)
- ZEUS dijets at high Q² (HERA-II)
- ZEUS incl. jets at high Q² (HERA-I)
- Jet predictions available in NLO (nlojet++)
- Jet data significantly helps to disentangle gluon- α_s correlation

Determination of strong coupling

- α_s is additional free parameter in PDF fit
- Jet data constrain α_s

$$\alpha_{s} (m_{z}) = 0.1183 \pm 0.0009_{exp} \pm 0.0005_{mod} \pm 0.0012_{had} \pm 0.004_{scale}$$

 Value mostly constrained by H1 norm. multijet data

H1 and ZEUS χ^2 - χ^2_{min} NLO • inclusive + charm + jet data, $Q_{min}^2 = 3.5 \text{ GeV}^2$ \Box inclusive + charm + jet data, $Q_{\min}^2 = 10 \text{ GeV}^2$ ▲ inclusive + charm + jet data, $Q_{min}^2 = 20 \text{ GeV}^2$ 20 0.105 0.11 0.115 0.12 0.125 0.13

Usage of HERA 'combined' data subm. to Phys. Lett. B Subm. to Phys. Rev. D 152

HERA combined data

- Limit on effective quark radius
- Consider finite radius through form-factor

$$\frac{d\sigma}{dQ^2} = \frac{d\sigma^{\rm SM}}{dQ^2} \left(1 - \frac{R_e^2}{6}Q^2\right)^2 \left(1 - \frac{R_q^2}{6}Q^2\right)$$

- Fit PDFs and 'quark radius'
- 95% C.L. on quark radius

 $-(0.47 \cdot 10^{-16} \,\mathrm{cm})^2 < R_q^2 < (0.43 \cdot 10^{-16} \,\mathrm{cm})^2$

Data improves previous limit by ZEUS and <u>H1</u> which has also previously constrained

- Limits on compositeness scale of contact interactions (3.6 – 7.2 TeV)
- Limits on low-scale quantum gravity gravitons
- Limits on Leptoquark exchange and squarks

H1 and ZEUS data + ZEUS polarized HERA-II data

- Study Couplings of u- and d-quarks to Z-boson
- Use in additional ZEUS polarized data

 $\tilde{F_2}^{\pm} = F_2^{\gamma} - (v_e \pm P_e a_e) \chi_Z F_2^{\gamma Z} + (v_e^2 + a_e^2 \pm 2P_e v_e a_e) \chi_Z^2 F_2^Z,$

- Simultaneous fit of PDFs and axial and vector-'quark couplings'
- Values consistent with SM expectations
- Sensitivity on u-quark higher than d-quark

24

Dijets in diffractive DIS (LRG)

(Inclusive) dijets in diffractive DIS

- Diffractive events identified by 'large rapidity gap' (LRG)
- $4 < Q^2 < 100 \text{ GeV2}, p_T^{\text{jet1(2)}} > 5.5 (4.0) \text{ GeV}$
- Theory: nlojet++ & H1DPDF2006 FitB
- Data used to extract strong coupling constant
 -> Fit supports concept of pQCD calculations for diff. dijets
 - -> Exp. precision overshoots theoretical one

 $\alpha_s(M_Z) = 0.119 \pm 0.004 \,(\text{exp}) \pm 0.002 \,(\text{had}) \pm 0.005 \,(\text{DPDF}) \pm 0.010 \,(\mu_r) \pm 0.004 \,(\mu_f)$ $= 0.119 \pm 0.004 \,(\text{exp}) \pm 0.012 \,(\text{DPDF}, \text{theo})$

Diffr. Dijets in Photoprod. and DIS (VFPS)

History

- 'Factorisation breaking' observed in diffractive events at Tevatron
- Photoproduction provides similar testing ground
- Fact. breaking observed by H1 but not by ZEUS

Here: Simultaneous measurement of dijets in diffr. DIS and PHP

- Use VFPS 220m from interaction point
- Calculate double-ratios: PHP/DIS

Single differential cross sections

- DIS data well described by NLO
- PHP NLO overshoots data
- New data with complementary method consistent with previous H1 results
- 'Suppression' shows no dependence as function of x_y or E_T^{jet1}

Study diffractive models

PLB 730 C (2014) 293 JHEP 08 (2014) 03 ZEUS-prel-15-001 EPJ C 76 (2016) 1

Exclusive dijets in diffractive DIS

• Study (normalised) angle between jet-plane and lepton-plane

$$\frac{1}{\sigma} \frac{\mathrm{d}\sigma}{\mathrm{d}\phi} \propto 1 + A\cos 2\phi$$

• Sensitive to nature of diffr. exchange: Resolved pomeron vs. two-gluon exchange model $\beta = r_{\rm D} : / r_{ID}$

$$\beta = x_{\mathrm{Bj}}/x_{IP}$$

• Two-gluon model is more successful in describing data than resolved Pomeron model

Diffractive prompt isolated photons

- Analysis extends prompt photon analysis in non-diff. PHP
 - Reminder: NLO and k_T-factorization predictions give good descriptions
- Prompt photon variables well described by Rapgap & H1PDF2006-FitB
- Problems at $z_{IP} \rightarrow 1$, where H1PDF2006-FitB was not fitted

Exclusive vector-meson production

Exclusive electroproduction of vector meson

• Measure ratio of $\psi(2s)$ over $J/\psi(1s)$ as function of Q^2

- Identify VM in $\mu^+\mu^-$ decay channels
 - 30 < W < 210 GeV, |t| < 1GeV²
- Compare against various models for
 - Generating cc-dipole in photon
 - cc-dipole scattering amplitude
 - Probability to form vector charmonium

All models perform reasonably well

- Ratio tend to be constant vs. W and |t|
- Spread indicate large theory uncertainty

Wealth of more QCD related measurements

New measurements, old measurements, and maybe forgotten

ones...

- Search for QCD instantons to be published by H1
- Isolated photons in photoproduction PLB 730 C (2014) 293 & JHEP 08 (2014) 03
- Exclusive ρ⁰ Meson Photoproduction with a Leading Neutron at HERA Eur.Phys.J.C76 (2016) 1
- Elastic and Proton-Dissociative Photoproduction of J/psi Mesons at HERA Eur.Phys.J.C73 (2013) 2466
- Event shapes Nucl. Phys. B 767 (2007) 1, EPJ C46 (2006) 343
- Numberous D* measurements JHEP 1509 (2015) 149, ...
- Carged particle production spectra Eur.Phys.J.C73 (2013) 2406

•

Conclusion

HERA inclusive DIS cross sections finalized

- One consistent dataset of all HERA structure function data
- HERAPDF2.0 as HERA-only PDF
- Baseline data for future PDF fits

Wealth of precision QCD measurements Many topics not covered in this short talk

- Jet and photon cross sections
- Various searches and limits
- Strong diffractive DIS programme
- Many exclusive final states measured with full HERA-II statistics
- low-x and soft physics

HERA experiments still active

• Improved/new measurements can still be expected this year

Electroweak symmetry breaking

Electroweak symmetry breaking

- H1 / ZEUS completed their final SF measurements
- New HERA-II data provide tighter constraints at high x / Q²
- These data provide some of the most stringent constraints on PDFs
- Stress-test of QCD over 4 orders of mag. in Q²
- DGLAP evolution works very well
- HERA data provide a self-consistent data set for complete flavour decomposition of the proton
- Final combination of HERA data completed
- HERAPDF2.0 QCD fit at NLO & NNLO

Valence quarks and xF3

Measure integral of $xF_3^{\gamma Z}$ - validate sumrule: $\int_{0.016}^{0.725} dx \ F_3^{\gamma Z}(x, Q^2 = 1500 \text{ GeV}^2) = 1.314 \pm 0.057(\text{stat}) \pm 0.057(\text{syst})$

LO integral predicted to be $5/3 + \mathcal{O}(\alpha_s/\pi)$

'Swimming' of data points

Data are combined onto a common x,Q² grid Two grids used: inclusive measurements √s=318 GeV fine x grid for √s=251 & 225 GeV

2927 data points \rightarrow 1307 combined measurements

Data are translated to nearest x,Q² grid point Iterative process using NLO QCD fit to data Use uncombined data in first iteration Then combined data in later iterations No changes after 3 iterations

$$(x_{grid}, Q_{grid}^2) = \frac{\sigma_{model}(x_{grid}, Q_{grid}^2)}{\sigma_{model}(x_{meas}, Q_{meas}^2)} \cdot \sigma_{meas}(x_{meas}, Q_{meas}^2)$$

Data are also translated outside of region of DGLAP fit validity $Q^2 < 3.0 \text{ GeV}^2$ Use phenomenological "fractal" model and interpolate to DGLAP region Other phenomenological fits tested \rightarrow negligible differences

H1 & ZEUS data combination II

PDF extraction from data: HERAPDF2.0

HERAPDF1.0 & 1.5 Combine NC and CC HERA-I data from H1 & ZEUS Complete MSbar NLO fit NLO: standard parameterisation with10 parameters NNLO HERAPDF 1.5 with 14p

HERAPDF2.0

Include additional NC and CC HERA-II combined data Complete MSbar NLO and NNLO fit NLO & NNLO fits require15 parameters

$$xf(x,Q_{0}^{2}) = A \cdot x^{B} \cdot (1-x)^{C} \cdot (1+Dx+Ex^{2})$$

$$xg(x) = A_{g}x^{B_{g}}(1-x)^{C_{g}}, \qquad xg(x) = A_{g}x^{B_{g}}(1-x)^{C_{g}} - A'_{g}x^{B'_{g}}(1-x)^{C'_{g}},$$

$$xu_{v} \quad xU = xu + xc \qquad xu_{v}(x) = A_{u_{v}}x^{B_{v}}(1-x)^{C_{u}}(1+E_{u_{v}}x^{2}), \qquad xu_{v}(x) = A_{u_{v}}x^{B_{u}}(1-x)^{C_{u}}, (1+E_{u_{v}}x^{2}),$$

$$x\overline{U} = x\overline{U} + x\overline{c} \qquad x\overline{U}(x) = A_{d_{u}}x^{B_{u}}(1-x)^{C_{u}}, \qquad xu_{v}(x) = A_{u_{v}}x^{B_{u}}(1-x)^{C_{u}}, (1+E_{u_{v}}x^{2}), \qquad xu_{v}(x) = A_{u_{v}}x^{B_{u}}(1-x)^{C_{u}}, (1+E_{u_{v}}x^{2}),$$

$$x\overline{U} = x\overline{U} + x\overline{c} \qquad x\overline{U}(x) = A_{d_{u}}x^{B_{u}}(1-x)^{C_{u}}, \qquad x\overline{U}(x) = A_{d_{u}}x^{B_{u}}(1-x)^{C_{u}}, (1+E_{u_{v}}x^{2}), \qquad x\overline{U}(x) = A_{d_{v}}x^{B_{u}}(1-x)^{C_{u}}, \qquad x\overline{D}(x) = A_{D}x^{B_{D}}(1-x)^{C_{D}}. \qquad x\overline{x} = f_{s}x\overline{D} \text{ strange sea is a fixed fraction } f_{s} \text{ of } D \text{ at } Q_{0}^{2} = 1.9 \qquad Q_{\min}^{2} = 3.5 \text{ or } 10 \text{ } GeV^{2} \qquad A_{U} = A_{U}(A_{U}^{2}) = 0.118 \qquad A_{U} = A_{U}(A_{U}^{2}) = 0.118 \qquad A_{U}(A_{U}^{2}) = 0.118 \qquad x_{U}(A_{U}^{2}) = 0.118 \qquad$$

High Q² charged current cross sections

Electron scattering

Positron scattering

HERAPDF2.0 comparisions

Comparison of HERAPDF2.0 vs MMHT14 , NNPDF3.0 , CT10 (others use only HERA-1 combined data) Differences at high x

- New HERA combined data improve precision at high x, Q²
- HERAPDF uses proton target data only \rightarrow no nucleon / deuterium data
- Softer gluon at high x

NC and CC measurements

Neutral current event selection:

High P_T isolated scattered lepton Suppress huge photo-production background by imposing longitudinal energy-momentum conservation

Kinematics may be reconstructed in many ways: energy/angle of hadrons & scattered lepton provides excellent tools for sys cross checks

Removal of scattered lepton provides a high stats "pseudo-charged current sample" Excellent tool to cross check CC analysis

Final selection: ~10⁵ events per sample at high Q^2 ~10⁷ events for 10 < Q^2 < 100 GeV²

Charged current event selection:

Large missing transverse momentum (neutrino) Suppress huge photo-production background Topological finders to remove cosmic muons Kinematics reconstructed from hadrons Final selection: ~10³ events per sample

slide by E. Rizvi

Heavy flavor schemes

Figure 20: The dependence of χ^2 /d.o.f. on Q_{\min}^2 for HERAPDF2.0 fits using a) the RTOPT [83], FONNL-B [90], ACOT [109] and fixed-flavour (FF) schemes at NLO and b) the RTOPT and FONNL-B/C [91] schemes at NLO and NNLO. The F_L contributions are calculated using matrix elements of the order of α_s indicated in the legend. The number of degrees of freedom drops from 1148 for $Q_{\min}^2 = 2.7 \text{ GeV}^2$ to 1131 for the nominal $Q_{\min}^2 = 3.5 \text{ GeV}^2$ and to 868 for $Q_{\min}^2 = 25 \text{ GeV}^2$.

HERAPDF2.0 NLO vs. NNLO

HERAPDF2.0 variants

The following variants of the HERAPDF2.0 PDFs have been released and will soon be available on LHAPDF (<u>https://lhapdf.hepforge.org</u>)

HERAPDF2.0 (NLO,NNLO, $Q^2_{min}=3.5 \text{ GeV}^2$)

- Data: combined HERA NC and CC inclusive cross sections
- HE Scheme: ROPT
- $\alpha_{s}(M_{z}^{2}) = 0.118$
- Grid with different $\alpha_s(M_Z^2)$ values (in the range [0.110-0.130] in steps of 0.01) are also released

HERAPDF2.0HiQ2 (NLO,NNLO)

- as HERAPDF2.0 but with Q^{2}_{min} = 10 GeV²

HERAPDF2.0AG (LO,NLO,NNLO, Q²_{min}=3.5 GeV²) "Alternative Gluon"

- Data: combined HERA NC and CC inclusive cross sections
- Use an alternative gluon parameterisation
- HF Scheme: ROPT
- $\alpha_{s}(M_{Z^{2}})=0.130$ (LO) and $\alpha_{s}(M_{Z^{2}})=0.118$ (NLO,NNLO)

HERAPDF2.0FF (NLO, Q²_{min}=3.5 GeV²)

- Data: combined HERA NC and CC inclusive cross sections
- HF Schemes: Use two alternative (FF3A and FF3B) Fixed-Flavour schemes
- $\alpha_{s}(M_{z^{2}})^{N_{f=3}}=0.106573$ equivalent to $\alpha_{s}(M_{z^{2}})^{N_{f=5}}=0.118$ (FF3A) and $\alpha_{s}(M_{z^{2}})=0.118$ (FF3B)

HERAPDF2.0Jets (NLO, Q²_{min}=3.5 GeV²)

- Data: combined HERA NC and CC inclusive cross sections and selected HERA charm and jet production measurements
- HF Schemes: ROPT
- free $\alpha_s(M_Z^2)$ or $\alpha_s(M_Z^2)=0.118$

"High-Q² version"

"Default PDF set"

"Charm and Jets"

"FF Schemes"