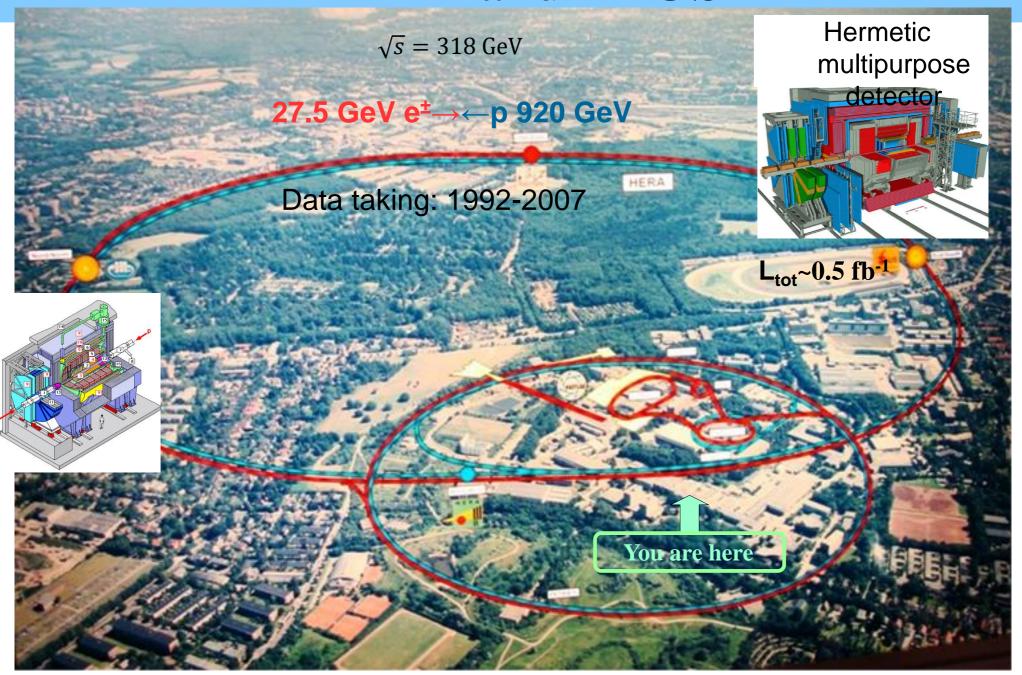
Measurement of the cross-section ratio $\sigma_{\psi(2S)}/\sigma_{J/\psi(1S)}$ in deep inelastic exclusive ep scattering at HERA

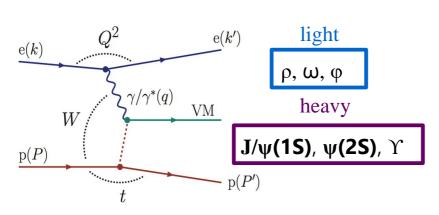
[arXiv:1601.03699]

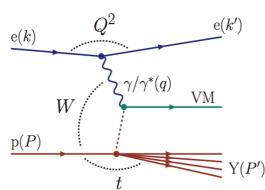

Jacek Ciborowski
(University of Warsaw)
on behalf of the **ZEUS Collaboration**

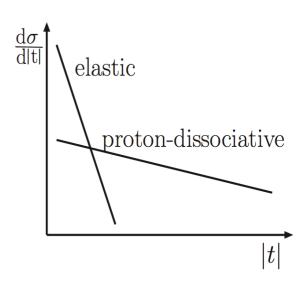
Credit to: Nataliia Kovalchuk

(University of Hamburg)

XIV International Workshop on Meson Production, Properties and Interactions 2-7 June 2016 Kraków


HERA and ZEUS

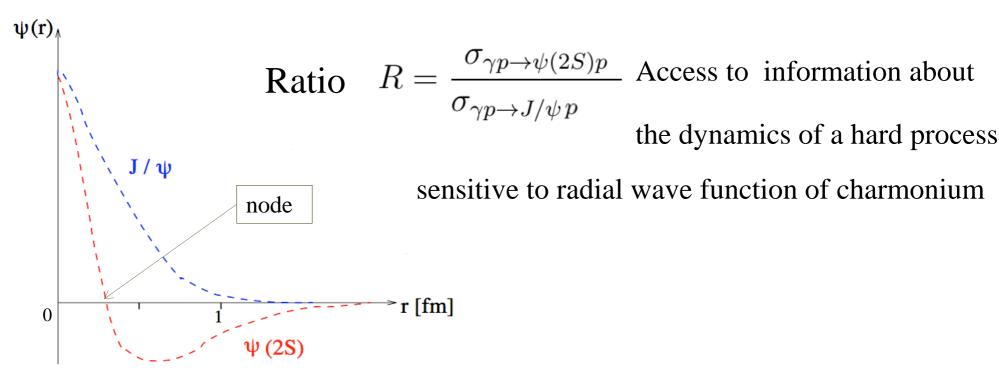



Diffractive vector meson (VM) production at HERA

elastic (exclusive)

proton-dissociative

Kinematics of the process


$$Q^2 < 1 \text{ GeV}^2$$
— γp
 $Q^2 \gtrsim 1 \text{ GeV}^2$ — **DIS**

$$Q^2 = -q^2 = -(k - k')^2$$

$$W^2 = (q + P)^2$$

$$t = (P - P')^2$$

$\sigma_{\psi(2S)}/\sigma_{J/\psi(1S)}$ in DIS

$\psi(2S)$ wave function different from that of $\ J/\psi$:

- Has a node at ≈ 0.35 fm
- $< r^2_{\psi(2S)} > \approx 2 < r^2_{J/\psi(1S)} >$

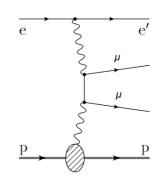
Investigated channels and samples

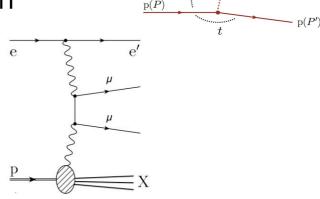
$$ψ(2S) \rightarrow J/ψ(1S) π^+ π^-; J/ψ(1S) \rightarrow μ^+ μ^-$$
 $ψ(2S) \rightarrow μ^+ μ^-$
 $J/ψ(1S) \rightarrow μ^+ μ^-$

Data samples

HERA I + HERA II data (1996 — 2007)

Integrated luminosity: 468 pb⁻¹




MC-data samples

Signal MC: DIFFVM for exclusive VM production

Background MC: GRAPE

for Bethe-Heitler mu-pair production

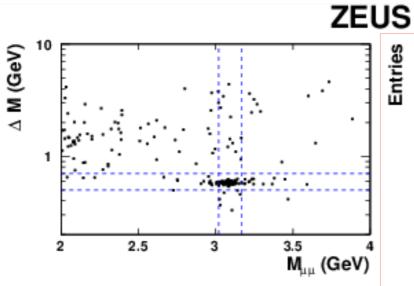
5

Selection criteria

- Scattered e with E > 10 GeV reconstructed in CAL
- Scattered p undetected
- Two reconstructed tracks identified as muons and for $\psi(2S) \rightarrow J/\psi(1S) \pi^+\pi^-$ additionally two pion tracks from $\mu\mu$ vertex
- Nothing else in detector (above noise)

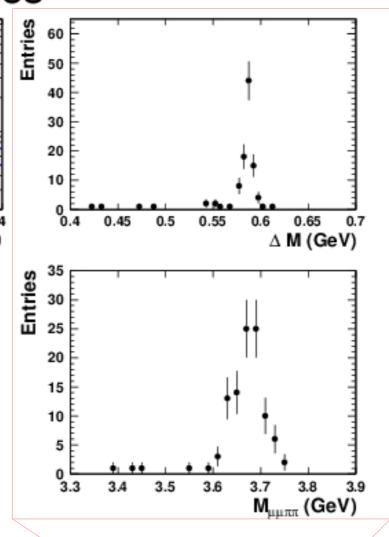
 $30 \le W \le 210 \text{ GeV}$

 $2 \le Q^2 \le 80 \text{ GeV}^2$


 $|t| \le 1 \text{ GeV}^2$

Background subtraction

Sideband of the signal: $2.00 < M_{\mu\mu} < 2.62$ GeV and $4.05 < M_{\mu\mu} < 5.00$ GeV straight line fit


$\psi(2S) \longrightarrow J/\psi(1S) \pi^+ \pi^-$

ZEUS 468 pb⁻¹

$$\Delta M = M_{\mu\mu\pi\pi}$$
 - $M_{\mu\mu}$

$$3.02 < M_{\mu\mu} < 3.17 \; GeV \\ 0.5 < \Delta M < 0.7 \; GeV$$

After cut on M_{µµ}

Determination of $\sigma_{\psi(2S)}/\sigma_{J/\psi(1S)}$

$$R_{\mu\mu} = \left(\frac{N_{\mu\mu}^{\psi(2S)}}{B(\psi(2S) \to \mu^{+}\mu^{-}) \cdot A_{\mu\mu}^{\psi(2S)}}\right) / \left(\frac{N_{\mu\mu}^{J/\psi(1S)}}{B(J/\psi(1S) \to \mu^{+}\mu^{-}) \cdot A_{\mu\mu}^{J/\psi(1S)}}\right)$$

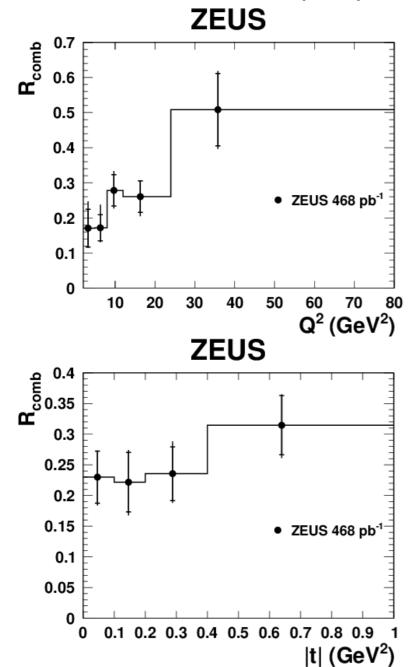
$$R_{J/\psi \,\pi\pi} = \left(\frac{N_{J/\psi \,\pi\pi}^{\psi(2S)}}{B(\psi(2S) \to J/\psi(1S) \,\pi^+\pi^-) \cdot A_{J/\psi \,\pi\pi}^{\psi(2S)}}\right) / \left(\frac{N_{\mu\mu}^{J/\psi(1S)}}{A_{\mu\mu}^{J/\psi(1S)}}\right) \,,$$

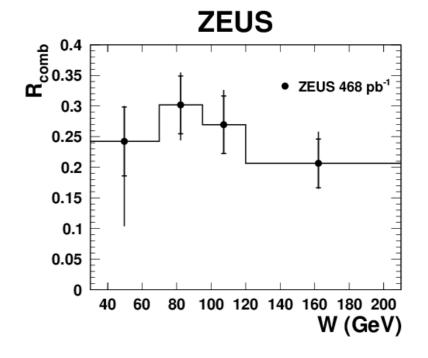
Combined result: weighted average

- MC sample DIFFVM J/ψ, ψ(2S) no cuts for Q2, |t|, W]
- Data sample CN v06a

Results

$R_{J/\psi\pi\pi}$	$0.26 \pm 0.03^{+0.01}_{-0.01}$
$R_{\mu\mu}$	$0.24 \pm 0.05^{+0.02}_{-0.03}$
$R_{\rm comb}$	$0.26 \pm 0.02^{+0.01}_{-0.01}$
$R_{\psi(2S)}$	$1.1 \pm 0.2^{+0.2}_{-0.1}$

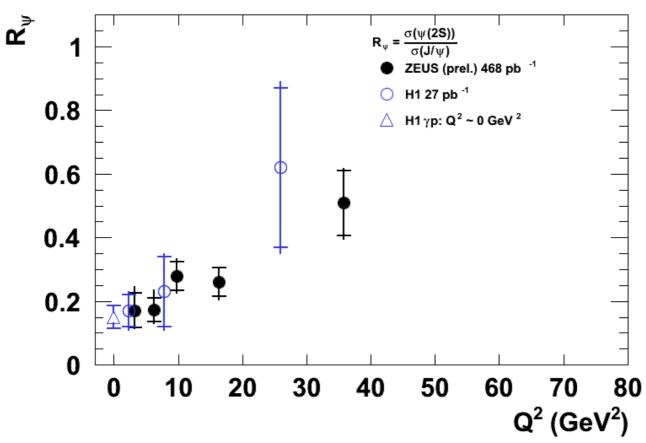

$$R_{\psi(2S)} = R_{J/\psi \pi\pi}/R_{\mu\mu}$$


 $30 \le W \le 210 \text{ GeV}$ $2 \le Q^2 \le 80 \text{ GeV}^2$ $|t| \le 1 \text{ GeV}^2$

icai

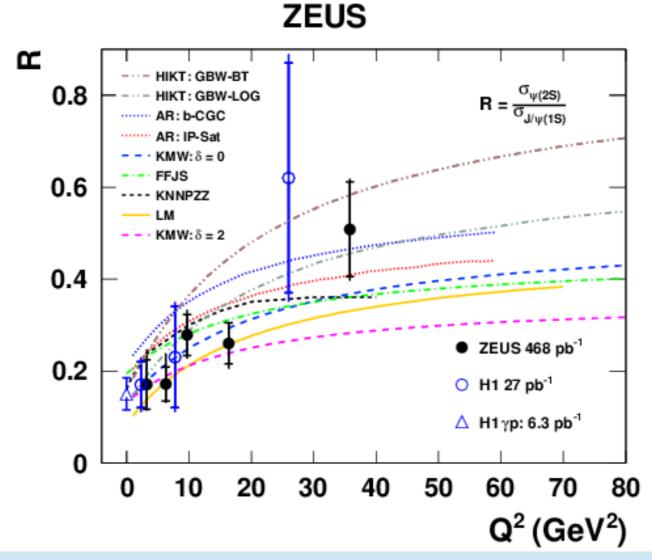
$Q^2 \; (\mathrm{GeV^2})$	$R_{J/\psi\pi\pi}$	$R_{\mu\mu}$	$R_{\rm comb}$	$R_{\psi(2S)}$
2 - 5	$0.21 \pm 0.07^{+0.04}_{-0.03}$	$0.10 \pm 0.09^{+0.09}_{-0.09}$	$0.17 \pm 0.05^{+0.05}_{-0.02}$	_
5 - 8	$0.19 \pm 0.05^{+0.02}_{-0.02}$	$0.13 \pm 0.06^{+0.12}_{-0.03}$	$0.17 \pm 0.04^{+0.05}_{-0.02}$	$1.5 \pm 0.8^{+0.4}_{-0.7}$
8 - 12	$0.27 \pm 0.05^{+0.06}_{-0.01}$	$0.29 \pm 0.08^{+0.03}_{-0.08}$	$0.28 \pm 0.05^{+0.03}_{-0.03}$	$0.9 \pm 0.3^{+0.4}_{-0.1}$
12 - 24	$0.27 \pm 0.05^{+0.04}_{-0.03}$	$0.24 \pm 0.08^{+0.01}_{-0.08}$	$0.26 \pm 0.05^{+0.01}_{-0.03}$	$1.1 \pm 0.4^{+0.6}_{-0.1}$
24 - 80	$0.56 \pm 0.13^{+0.04}_{-0.09}$	$0.42 \pm 0.17^{+0.12}_{-0.04}$	$0.51 \pm 0.10^{+0.04}_{-0.04}$	$1.3 \pm 0.6^{+0.3}_{-0.6}$
W (GeV)	$R_{J/\psi\pi\pi}$	$R_{\mu\mu}$	$R_{\rm comb}$	$R_{\psi(2S)}$
30 - 70	$0.24 \pm 0.07^{+0.01}_{-0.13}$	$0.24 \pm 0.10^{+0.03}_{-0.14}$	$0.24 \pm 0.06^{+0.01}_{-0.13}$	$1.0 \pm 0.5^{+0.5}_{-0.2}$
70 - 95	$0.30 \pm 0.06^{+0.01}_{-0.04}$	$0.31 \pm 0.09^{+0.09}_{-0.03}$	$0.30 \pm 0.05^{+0.02}_{-0.03}$	$1.0 \pm 0.3^{+0.1}_{-0.2}$
95 - 120	$0.28 \pm 0.06^{+0.05}_{-0.01}$	$0.24 \pm 0.08^{+0.04}_{-0.05}$	$0.27 \pm 0.05^{+0.03}_{-0.01}$	$1.2 \pm 0.5^{+0.5}_{-0.2}$
120 - 210	$0.22 \pm 0.05^{+0.07}_{-0.01}$	$0.17 \pm 0.07^{+0.02}_{-0.05}$	$0.21 \pm 0.04^{+0.03}_{-0.01}$	$1.3 \pm 0.6^{+0.7}_{-0.2}$
$ t \; (\mathrm{GeV^2})$	$R_{J/\psi\pi\pi}$	$R_{\mu\mu}$	$R_{\rm comb}$	$R_{\psi(2S)}$
0 - 0.1	$0.23 \pm 0.05^{+0.02}_{-0.02}$	$0.23 \pm 0.09^{+0.04}_{-0.05}$	$0.23 \pm 0.04^{+0.01}_{-0.02}$	$1.0 \pm 0.4^{+0.3}_{-0.2}$
0.1 - 0.2	$0.22 \pm 0.06^{+0.02}_{-0.03}$	$0.23 \pm 0.09^{+0.02}_{-0.06}$	$0.22 \pm 0.05^{+0.02}_{-0.02}$	$0.9 \pm 0.4^{+0.5}_{-0.2}$
0.2 - 0.4	$0.27 \pm 0.06^{+0.06}_{-0.01}$	$0.18 \pm 0.07^{+0.05}_{-0.06}$	$0.24 \pm 0.04^{+0.03}_{-0.02}$	$1.5 \pm 0.6^{+0.5}_{-0.2}$
0.4 - 1	$0.32 \pm 0.06^{+0.05}_{-0.03}$	$0.30 \pm 0.08^{+0.02}_{-0.05}$	$0.32 \pm 0.05^{+0.01}_{-0.02}$	$1.1 \pm 0.3^{+0.3}_{-0.1}$

$\sigma_{\psi(2S)}/\sigma_{J/\psi(1S)}$ vs Q², W and |t|



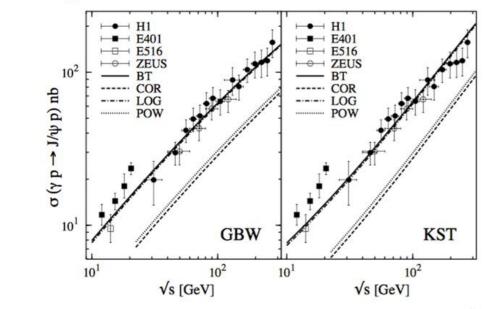
- Indication of an increase with Q^2
- Independent of W
- Independent of |t|

ZEUS — H1 comparison



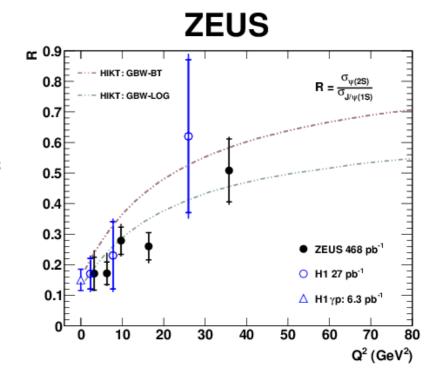
H1 collaboration: data 95-97, Eur. Phys. J. C10 (1999) 373

Good agreement - $\sigma(\psi(2S))/\sigma(J/\psi(1S))$ increases with Q^2 ZEUS smaller uncertainties owing to 17x higer integrated luminosity

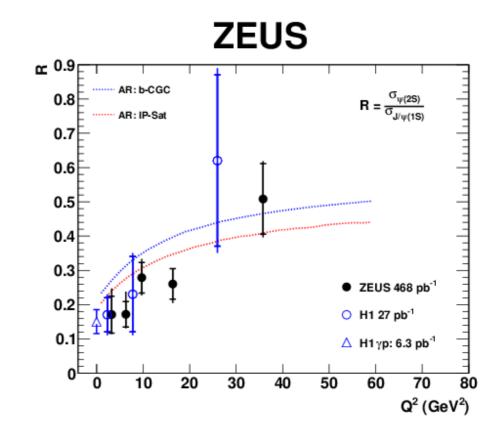

Model predictions

All models predict an increase of $\sigma(\psi(2S))/\sigma(J/\psi(1S))$ with Q^2

HIKT calculations

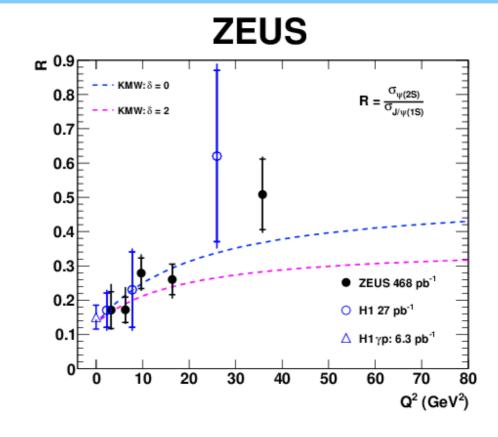

ion of energy.

RE 2. Integrated cross section for elastic photoproduction with real photons ($Q^2 = 0$) calc


HIKT — from <u>Huefner</u> et al., use 2 forms for the dipole cross section calculation and 4 forms of potentials to calculate the wave functions; BT and LOG use $m_c \approx 1.5$ GeV, COR and POW use $m_c \approx 1.8$ GeV

The predicted ratio values for the BT model are significantly larger compared to measurements

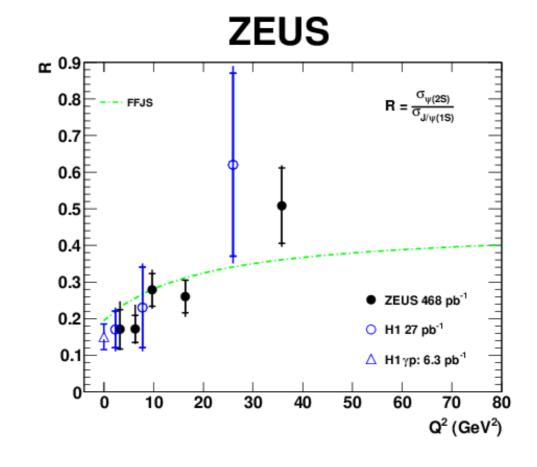
AR calculations


The IP-Sat prediction is about 20% lower than that for b-CGC and gives a better description of the data

AR — from <u>Armesto</u> and <u>Rezaeian</u>, calculate the dipole cross section using the Impact-Parameter dependent Color Glass Condensate (b-CGC) and the Saturation (IP-Sat) models

KMW calculations

The prediction with δ = 0 gives a good description of the data and the prediction with δ = 2 is below the measured values at higer Q^2

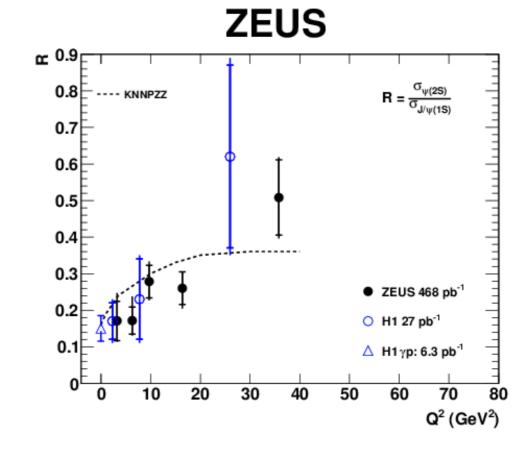


KMW — from Kowalski, Motyka, Watt,

based on the QCD description and an assumption of universality of the quarkonia production mechanism

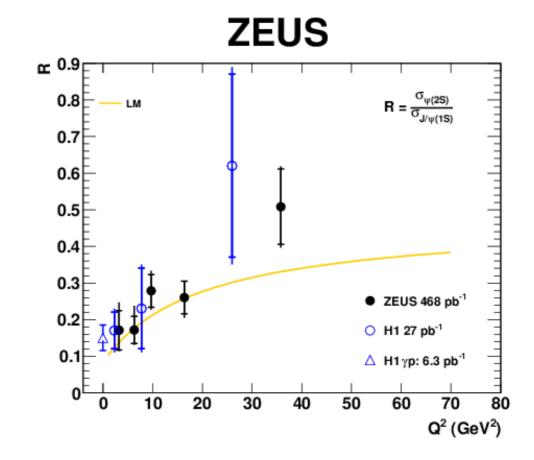
- $\delta = 0$ for non-relativistic wave functions
- $\delta = 2$ for relativistic boosted Gaussian model

FFJS calculations


Describe the data reasonably well

FFJS — from <u>Fazio</u> et al., use a two component Pomeron model to predict the cross sections for VM production

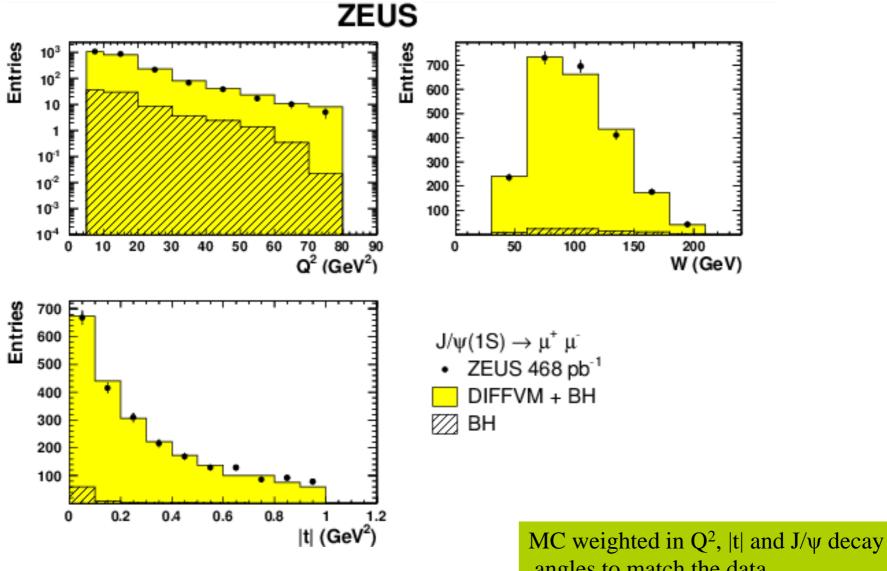
KNNPZZ calculations


The model used in original H1 publication

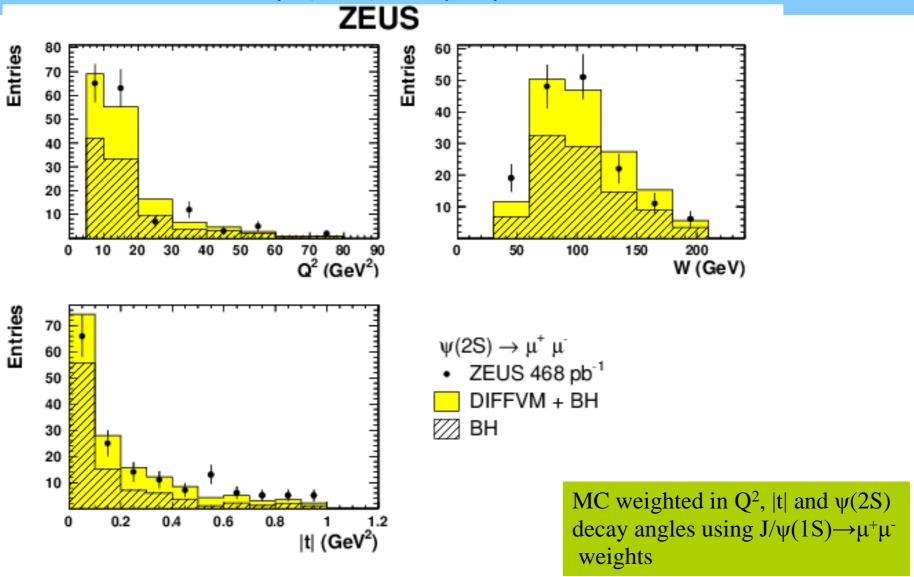
Describe the data well

KNNPZZ — from Nemchik et al., describe the BFKL pomeron in terms of the colour-dipole cross section which is a solution of the generalised BFKL equations

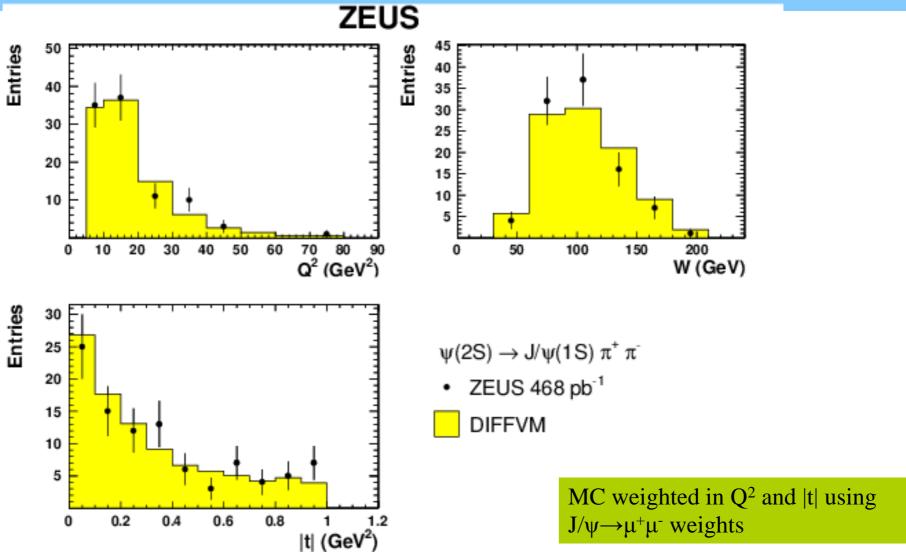
LM calculations


Good description of the data

LM — from <u>Lappi</u> and <u>Mäntysaari</u>, use dipole picture in the IP-Sat model to predict VM production


Summary

- . The pQCD prediction of $\sigma(\psi(2S))/\sigma(J/\psi(1S))$ ratio rise with Q^2 and is demonstrated by data
- Uncertainties smaller compared to the H1 HERA I (1999) results
- $\sigma(\psi(2S))/\sigma(J/\psi(1S))$ ratio compared to models of VM production, some discrimination of the different models possible
- $\sigma(\psi(2S))/\sigma(J/\psi(1S))$ independent of W and |t|
- arXiv:1601.03699


Backup: Data-MC comparison for $J/\psi(1S)$

Backup: Data-MC comparison for $\psi(2S) \rightarrow \mu^+ \mu^-$ zeus

Backup: Data-MC comparison for $\psi(2S) \rightarrow J/\psi(1S) \pi^+\pi^-$

