Recent results on diffractive and forward physics at HERA

30 Aug 2016 ISMD 2016, Jeju, Korea Yuji Yamazaki (Kobe Univ.) on behalf of the H1 and ZEUS Collaborations

Outline

Short introduction to diffraction and forward physics in ep scattering at HERA

Recent results

- D* production in diffractive DIS
- Prompt photons in photoproduction
- Ratio of $\psi'/\psi(1S)$ in diffractive DIS
- ρ^0 production cross sections in diffractive production

DIS at HERA and forward particles

Diffraction and forward production in DIS

in comparison to the results shown later in this talk of the parton to the diffractive exchange

x_{IP} = 0.01

x=5E-05 β=0.005 (i=11) -8E-05 x=0.00013 B=0.013 (i=9

> =0.0002 -0.00032 0.032 (i=7)

> > 0.0005 B=0.05 (i=6) =0.0008 B=0.08 (i=5) r=0.0013 B=0.13 (i=4

10²

c=0.002 B=0.2 (i=3)

> =0.0032 β=0.32 (i=2)

> > =0.005

10³ Q² [GeV²]

β=0.5 (i=1) c=0.008

8=0.8 (i=0

H1 Data H1 2006 DPDF Fit A (extrapol. fit)

5

D* production in diffractive DIS

Heavy flavour production: sensitive to gluons

Integrated cross section is consistent with NLO prediction using HERA DPDFs

diffractive D*: differential cross sections

Good description by the NLO calculation

DPDF is "universal" for this process

 x_{IP} : longitudinal fraction of the momentum of the diffractive exchange to the incoming proton

y: Bjorken variable $y = \frac{p \cdot q}{p \cdot k}$

Data consistent with factorisation in diffractive DIS

Prompt photon in diffractive photoproduction

Smaller sensitivity to fragmentation than (di-)jet measurements

Jet + photon: reconstructing x_{γ} (resolved vs direct) and z_{IP} (longitudinal distribution of partons in the "Pomeron")

x_{γ} spectrum: resolved vs direct

Prediction: RAPGAP LO+PS Monte-Carlo with LO photon PDF (SaSG 1D) and DPDF (H1 2006 Fit B)

Resolved:Direct = 19:81 to describe the data

- default RAPGAP predicts higher resolved fraction

Good description on data after resolved / direct reweight

 Z_{IP} distribution

Peak near unity

- no background source identified

"Super-hard" component in Pomeron?

Ratio $\psi(2S)/\psi(1S)$ in diffractive DIS

Prediction: the ratio increases with Q^2

$R vs Q^2$ and comparison to models

New data: 468 pb^{-1}

Confirming earlier
 H1 result

Most of the models reproduces the behaviour

 Models with very slow increase not favoured

Steep increase with Q^2 from photoproduction to DIS regime

R dependence with other variables

No significant dependence on:

- $W: \gamma^* p$ centre-of-mass energy
- t: momentum transfer
 from the proton (that stays intact)

No dependence apart from Q^2 , i.e. the transverse size of $\gamma^{(*)}$

ho^0 photoproduction with a neutron

(One-) Pion Exchange (OPE) dominant at high x_L

- Difference from inclusive neutron production
- > Accessing $\gamma \pi$ diffraction

Background: neutron from proton-dissociated system *Y*

$\rho^0 + n$: Background subtraction

Using shape difference in x_L

- OPE is dominant at high x_L (0.65 < x_L < 0.95)

Proton dissociative background is subtracted hereafter

Good description of data with thus determined background fraction

$\rho^0 + n$: γp cross sections

inclusive spectrum in DIS (blue-dashed: OPE contribution)

 $\begin{array}{l} 20 < W_{\gamma p} < 100 \; {\rm GeV} \\ 0.35 < x_L < 0.95 \\ t' < 1 \; {\rm GeV^2} \end{array}$

Similar shape as the inclusive neutron

- factorisation at proton-neutron vertex

Well described by many of models

except for FMS and NSSS

Absolute cross section: $\sigma_{\gamma\pi}/\sigma_{\gamma p}=0.25\pm0.06$

- smaller than additive quark model ($\simeq 0.6$)
- absorption?

$\rho^0 + n$: t-distribution (neutron p_T)

⁰ + n: W-dependence

Pomeron trajectory: $\delta \simeq 0.08$ $\gamma p \rightarrow \rho^0 p$ at HERA prefers to increase with W Different for $\gamma \pi \rightarrow \rho^0 \pi$?

t'-dependence ($\gamma\pi$ scattering mom. transf.)

(C)

 $b_1 \sim 25 \text{ GeV}^{-2}$: diffractive peak - very peripheral scattering $b_2 \sim 3.5 \text{ GeV}^{-2}$:

- Interference between various diagrams (a)–(c) according to double-peripheral process (π, \mathbb{P}) ?
- "Pion dissociation" component?

Summary

D* in DIS:

- Diffractive factorisation in DIS further supported
- Jet + direct γ in photoproduction:
 - Hard (quark) component in diffraction?

 ψ'/ψ in DIS:

- Insight to charmonium production
- $\rho^0 + n$: diffractive " $\gamma \pi$ " scattering
 - Factorisation between γ and proton vertex One-pion exchange describes most of the feature of the data
 - Absorption?

Hope to have combined LHC+HERA analyses on dPDF soon!