XXIII International Baldin Seminar on High Energy Physics Problems September 19 – 24, 2016, Dubna, Russia

Proton Structure Functions and Parton Densities at HERA

S.N. Shushkevich on behalf of H1 and ZEUS collaborations

Eur.Phys.J.C75 (2015) 12, 580 [arxiv:1506.06042] Eur.Phys.J.C 74 (2014) 2814 [arxiv:1312.4821] Phys. Rev. D 90 (2014) 072002 [arXiv:1404.6376]

The HERA collider

H1 and ZEUS 0.5 fb⁻¹ per experiment e^+ and e^-

Deep Inelstic Scattering (DIS)

Neutral Current (NC)

Charged Current (CC) $\frac{e}{k}$ $Q^2 \sum_{W}^{V}$

$$s = (k + P)^2$$
$$Q^2 = -q^2 = (k - k')^2$$
$$x = \frac{Q^2}{2(Pq)}$$
$$y = \frac{(Pq)}{(Pk)}$$

centre-of-mass energy squared

p

boson virtuality

Bjorken x

inelasticity

realted as
$$Q^2 = sxy$$

Charged Current Cross Section

reduced cross section

cross section measurement

structure fuctions

$$\sigma_{r,CC}^{\pm} = \frac{2\pi x}{G_F^2} \left[\frac{M_W^2 + Q^2}{M_W^2} \right]^2 \cdot \frac{d^2 \sigma_{CC}^{e \pm p}}{dx dQ^2} = \frac{Y_+}{2} W_2^{\pm} \mp \frac{Y_-}{2} x W_3^{\pm} - \frac{y^2}{2} W_L^{\pm}$$
$$Y_{\pm} = 1 \pm (1 - y)^2$$

In QPM

$$W_2^- = x(u + c + \bar{d} + \bar{s}) \quad xW_3^- = x(u + c - \bar{d} - \bar{s})$$
$$W_2^+ = x(\bar{u} + \bar{c} + d + s) \quad xW_3^+ = x(d + s - \bar{u} - \bar{c})$$

Neutral Current Cross Section

NC and CC Inclusive Data Samples

H1 and ZEUS

Proton Srtucture Functions and PDF's at HERA

41 NC and CC data samples from H1 and ZEUS experiments

- 21 data sets from HERA I
- 20 data sets from HERA II

Corresponding lumi is about 1 fb⁻¹

Combine data properly taking uncertainties into account

 procedure is the same as was used for HERA I before

Averaging cross section

2927 cross sections are combined into 1307 points with 169 correlated systematic errors χ^2 / ndf = 1685/1620

Combination of up to 6 measurements into one averaged point

Reduction of stat. and syst. uncertainties

NC and CC DIS Cross Section

EW component of SM

NC and CC cross sections become similar at $Q^2 \approx M_Z^2, M_W^2$

Demonstration of electroweak unification

Proton Srtucture Functions and PDF's at HERA

Interplay between gluon emission and gluon splitting results in F_2 scaling at x ~ 0.1

Effect is mostly from from yZ interference

Little Q^2 dependence, so transform all to the same $Q^2 = 1000 \text{ GeV}^2$ and average

F_L Structure Function: Linear Fit

At moderate Q²

Sensitivity to F_1 at high y only

Change s at fixed x and $Q^2 \rightarrow$ change y

Simultaneous extraction of $\rm F_{L}$ and $\rm F_{2}$ with the linear fit

Results are model independent

The Longitudinal Structure Function $F_{1}(Q^{2})$

Probability of agreement is about 20% Good agreement between NNLO predictions and the measurement Additional constraints to PDF's at low Q^2

CC probe of u/d decompositon of proton

 $\tilde{\sigma}(e^-p) \propto (xu + xc) + (1-y)^2 (x\bar{d} + x\bar{s})$

H1 and ZEUS

$$\check{\sigma}(e^+p) \propto (x\bar{u} + x\bar{c}) + (1-y)^2(xd + xs)$$

e⁻p is dominated by u-quark

e⁺p at high x is related to d-quark

HERAPDF2.0 QCD Fit

- PDFs DGLAP evolution at NLO and NNLO
- Input: HERA combined NC/CC data sets
- No nuclear, heavy target corrections
- Starting scale: $Q^2_{0} = 1.9 \text{ GeV}^2$
- Parametrization

$$\begin{aligned} xg(x) &= A_g x^{B_g} (1-x)^{C_g} - A'_g x^{B'_g} (1-x)^{C'_g} \\ xu_v(x) &= A_{u_v} x^{B_{u_v}} (1-x)^{C_{u_v}} (1+E_{u_v} x^2) \\ xd_v(x) &= A_{d_v} x^{B_{d_v}} (1-x)^{C_{d_v}} \\ x\bar{U}(x) &= A_{\bar{U}} x^{B_{\bar{U}}} (1-x)^{C_{\bar{U}}} (1+D_{\bar{U}} x) \\ x\bar{D}(x) &= A_{\bar{D}} x^{B_{\bar{D}}} (1-x)^{D_{\bar{D}}} \end{aligned}$$

- Heavy quarks: general-mass variable-flavour-number scheme RTOPT
- Available at www.desy.de/h1zeus/herapdf20/ and on LHAPDF

HERAPDF2.0 : Uncertainties

Experimental uncertainty

Hessian method with $\Delta \chi^2 = 1$

Cross check with pseudo data MC replicas

Model uncertainty

 $Q^2_{\rm min}$, $f_{\rm s}$, $M_{\rm c}$, $M_{\rm b}$

Parametrisation uncertainty

Variation of starting scale Form of parametrisation (E and D params.)

HERAPDF2.0 : Comparison to Modern PDF Fits

Conclusions

The H1 and ZEUS collaborations measured inclusive $e^{\pm}p$ scattering cross sections at HERA from 1994 to 2007, collecting a total integrated luminosity of about 1 fb⁻¹

The data were combined to create one consistent set of NC and CC cross section measurements for unpolarised scattering, spanning six orders of magnitude in both x and Q^2

The structure functions F_2 , xF_3 and F_L are measured

The inclusive cross sections were used as input to a QCD analysis with the DGLAP formalism. The resulting parton distribution functions are denoted HERAPDF2.0 and are available at LO, NLO and NNLO