

Paul Newman (University of Birmingham)

11 April 2016 DESY, Hamburg

24th International Workshop on Deep-Inelastic Scattering and Related Subjects

- The only ever collider of electron beams with proton beams:

 $\int s_{ep} \sim 300 \text{ GeV}$

- ~0.5 fb⁻¹ per exp't

Both lepton charges and polarisations
Additional ~25 pb⁻¹
@ E_p = 575, 460 GeV

- DESY / accelerator group did amazing job!

"We expect your talk to cover a summary of the general HERA legacy, recent highlights such as the final H1ZEUS data combination (HERAPDF2.0) as well as an outlook to future experiments (LHeC and others) ... You have 30+10 minutes"

Sincere apologies for the many obvious omissions

A period that included the digital revolution

User defined animation

[F Eisele, ~ 1986]

Post Digital Revolution: Detector Legacy

Vital contributions to developments of detectors, accelerator technologies, polarimetry, triggers ...
Impressive calibration

- (e.g. ~0.5% electron energy scale, 1% jet energy scale)
- Extensive Beamline instrumentation

Early Collaboration Mugshots (~1993)

Early Collaboration Mugshots (~1993)

23 Years Later: emerging HERA legacy

883 PhD and Diploma Theses Statistics 1986 - 2012

The Paper Legacy

~100m of library shelf space per experiment

The People Legacy

HERA-educated people highly visible in particle physics experiments world-wide, running university physics departments, directing labs, making major and diverse contributions to life well ²⁰¹² beyond our field.

The Physics Legacy

Since DIS'15 ... Flagship HERA-II paper belonging to all who dedicated their time to HERA

Combination of measurements of inclusive deep inelastic $e^{\pm}p$ scattering cross sections and QCD analysis of HERA data

4 x e+p HERA-I lumi 15 x e-p HERA-I lumi

Combining Final ZEUS and H1 Inclusive NC/CC Data

Eur. Phys. J. C (2015) 75:580

DOI 10.1140/epic/s10052-015-3710-4

Regular Article - Experimental Physics

- Data span 6 orders of mag in x / Q^2 [0.045 < Q^2 < 50000 GeV²]
- 41 data sets with 2927 input data points
- Combined into 1307 final points ($\chi^2 = 1687$ / 1620)
- 162 sources of correlated systematic error allowed to float

- Beyond √2 statistical improvement ... cross-calibrating to tackle (different) dominating H1, ZEUS systematics.

Final NC precision:

- < 1.5% for 3 < Q^2 < 500 GeV²
- < 3% up to Q^2 = 3000 GeV² ⁸

SM Textbook Legacy: EW Unification for Space-like Bosons

Neutral Current x-sec

$$\frac{\mathrm{d}\sigma^{NC}}{\mathrm{d}x \,\mathrm{d}Q^2} \sim \alpha_{em}^2 \quad \bullet \left(\frac{1}{Q^2}\right)^2 \quad \bullet \tilde{\sigma}_{NC}$$

 NC and CC cross sections become comparable at EW unification scale (couplings unified)

- Parton density info encoded in σ_{NC} and σ_{CC}

Legacy of Testing the SM

Despite huge number of searches and some world-leading sensitivity, HERA found the Standard Model ...

- Fantastic agreement across wide range of final states ... no deviations > 2.5σ .

- Compositeness $R_a < 0.43 \times 10^{-18} m$

- plus dedicated low Q² datasets (0.045 < Q² < 1.5 GeV²)
- plus reduced proton beam energy data \rightarrow F_L ...

NC e^{+/-} Charge Dependence & Valence Quarks

... Direct sensitivity to valence quarks (incl low x)

- Difference between e⁻p and e⁺p NC cross sections at large Q^2 measures $xF_3^{\gamma Z}$ structure function ...
- Interference between γ and Z exchange
- Minimal scale dependence \rightarrow interpolate to Q² = 1000 GeV²

QCD Evolution and the Gluon Density

H1 and ZEUS

- NC Q² evolution yields low-medium x gluon, assuming DGLAP
- High x gluon is tough! Other observables / more data needed

An Early Picture of the Proton through the HERA Microscope

Final Picture of the Proton through the HERA <u>Micro</u>Attoscope

herøism

The Hadronic Final State Legacy

Unique laboratory for precision testing of QCD and searching for novel dynamics at low x

- Impossible to do justice to the huge number of results
- A very limited personal selection follows
- More complete documentation at e.g...

The Hadronic Final State at HERA

Paul R. Newman*

School of Physics and Astronomy, University of Birmingham, Birmingham B15 2TT, UK

Matthew Wing[†]

Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT, UK; DESY, Notkestrasse 85, 22607 Hamburg, Germany

[Rev.Mod.Phys. 86 (2014), 1037]

(Dated: January 15, 2014)

- Clear presentation of charm and beauty contribution to $\sigma(\text{NC})$

-Testing ground for development of heavy flavour schemes in QCD

High Precision Jet Data in DIS

- Excellent agreement with QCD over wide kinematic range.
 - Sensitive to gluon density in lowest order
- Role in benchmarking jet algorithms

Other inventive uses for HERA jet data ...

- Hard scattering in $\gamma p \rightarrow$ constraining photon structure
- Searches for BFKL-topologies
- Jet substructure
- Underlying event treatment
- Searches for Multi-Parton Interactions

Jet and Charm Data in Fits $\rightarrow \alpha_s$

H1 and ZEUS

Including jet and charm data in HERA-II fits allows simultaneous α_s (and m_c) without significant impact on PDFs

 $\alpha_s(M_Z^2) = 0.1183 \pm 0.0009(\exp) \pm 0.0005(\text{model/parameterisation}) \pm 0.0012(\text{hadronisation}) \stackrel{+0.0037}{_{-0.0030}}(\text{scale})$.

- Experimental errors << theory scale variation
- Competitive result and good agreement with world average

Perturbatively Calculable Exclusive Vector Mesons!

- Capability to switch pQCD on or off by varying hard scale (Q^2 or M_V^2)

- Hard processes calculable starting from proton PDFs (or colour dipole + proton x- section)

Three (even four) -fold Differential Diffractive X-Sections / Structure Functions

(X_{IP})

p

Diffractive process with excitation to continuum of masses contributes ~10% of low x cross section

- The soft stuff factorises!
- Looks remarkably like a soft pomeron!

Diffractive Parton Densities Describing Everything in Final State Diffractive DIS

Low x Physics: the "Pathological" Gluon

Does the low x gluon saturate?

- Recombination $(gg \rightarrow g)$?
- Resummation?
- Just N(N)LO DGLAP + HT?

→towards new high density, small coupling, parton regime with non-linear parton evolution (e.g. CGC)?
→ cf confinement, hadronic mass ...

HERA-II Paper: "some tension in fit between low & medium Q^2 data... not attributable to particular x region" (though kinematic correlation) Others (e.g. NNPDF) showed NLO DGLAP description deteriorates when adding data in lines parallel to 'saturation' curve in x/Q^2 .

Low x Saturation in Diffractive Data?

- Elastic J/ Ψ in γp ...
- No evidence for change in shape at high W (i.e. low x),

even at LHC (t dependence yet to be exploited)

- Rather flat diffractive/inclusive ratio and failure of Diffractive PDF fits to data below $Q^2 \sim 5 \text{ GeV}^2$ best described by dipole models incorporating saturation ...

BOTTOM LINE ... HERA not conclusive and LHC has not given greater clarity

Establishing the Legacy

... but HERA is not quite ready to be consigned to history yet!...

DESY-15-253 IPPP/15/76 DCPT/15/152 MAN/HEP/2015/21 December 2015

... and Data Preservation Project ensures new analyses possible over timescale of >= 10 years.

Summary of workshop on Future Physics with HERA Data

A. Bacchetta¹, J. Blümlein², O. Behnke³, J. Dainton⁴, M. Diehl³, F. Hautmann^{5,6}, A. Geiser³, H. Jung^{3,7}, U. Karshon⁸, D. Kang⁹, P. Kroll¹⁰, C. Lee⁹, S. Levonian³, A. Levy¹¹,
E. Lohrmann^{3,12}, S. Moch¹², L. Motyka¹³, R. McNulty¹⁴, V. Myronenko³, E.R. Nocera^{6,15}, S. Plätzer^{16,17}, A. Rostomyan³, M. Ruspa¹⁸, M. Sauter¹⁹, G. Schnell^{20,21}, S. Schmitt³, H. Spiesberger^{22,23}, I. Stewart²⁴, O. Turkot³, A. Valkárová²⁵, K. Wichmann³, M. Wing^{26,3,12}, A.F. Żarnecki²⁷

PDFs working in extreme cases at the LHC ...

- Jets with cross sections varying over many orders of magnitude, extending to eg $M_{ii} \sim 5$ TeV
- LHCb Electroweak gauge bosons, extending well into forward region

- (NNLO) shape
comparison of γγ
background v
"X(750)", for
perfect rec'n
and no backgrd

... but LHC has a VERY long programme """ what are the limiting factors in 15 years time?...

Higgs X-Section / Coupling PDF Uncertainties

scale

13%

expansion

N3LO pdfs

12%

EW

10%

alpha-s

26%

pdf

Theoretical Uncertainties

After N³LO calculation of gluon-fusion Higgs cross section at 13 TeV \rightarrow much reduced scale uncertainty

... largest sources of unertainty:

- PDFs [1.9%]

- α_s [2.6%] with additional 1.2% uncertainty on non-availability of N³LO PDFs

[Anastasiou et al [1503.06056], Dulat, CERN Dec '15]

... reaching this precision is a major legacy of HERA

... much of Higgs sector becomes PDF limited in HL-LHC era ...

<u>Projected Experimental</u> <u>Uncertainties</u>

Dashed regions = scale

& PDF contributions

 $\frac{\Delta \mu}{\mu}$

$PDFs \rightarrow New High Mass LHC Particles$

- Gluino pair signatures appear as deviations from theory, not resonances

- Both signal & background driven by high x gluon ...
 → x-sec poorly known beyond 1 TeV
- For gluino pair at 1.5TeV, σ(13TeV)/σ(8TeV) > 40 ... Already an issue in 2016

Similarly, BSM sensitivity through excess in high mass Drell-Yan limited by high x antiquark ³⁰

HERA's Non-Legacy

Some of HERA's Limitations ...

- Insufficient lumi for high x precision or searches
- Lack of Q² lever-arm restricts precision on low x for gluon
- Limited quark flavour info (no deuterons to separate u and d)
- Protons not polarised except HERMES (no access to spin, transverse structure at low x)
- No nuclear targets

ALL of these limitations are addressed by currently proposed future DIS projects in the USA and at CERN.

Needs strong support from the DIS community to have a chance of success (HERA was ~1000 at its peak).

Short summary follows - see parallel sessions for more ...³¹

EIC: White paper 2012, Construction Recommendation NSAC Long Range Plan 2015, User Group 2016, DIS'16 pre-meet LHeC: CDR 2012, ongoing CERN-sponsored working group, ₃₂ Presented to ECFA 2015 + on NuPECC (long-term) roadmap

EIC Physics

Polarised hadrons → DIS spin puzzle and 2+1D proton structure tackled in unprecedented low x regime

Wide range of ions and large step in eA kinematic range → Nuclear parton densities → Potential access to low x sat'n → Struck partons in cold nuclear matter³³

LHeC Physics

- Substantial Higgs programme

- Revolutionary p PDF (& α_s) precision improves LHC sensitivity to Higgs and new physics

- Elucidates low x dynamics in ep & eA

4 orders of mag. in
 kinematic range of
 ³⁴/_x nuclear structure

A HERA Legacy Summary

"Alright, but apart from:

- precisely measuring parton densities for LHC rapidity plateau
- providing a precision testing ground for QCD calculations
- showing how to handle diffractive processes in QCD
- opening the way to a new field of low x physics
- pointing the way on photon structure, hadronisation corrections, underlying event, jet substructure, BFKL searches ...
- publishing over500 papers
- training 1000s of young people
 leaving behind data, preserved in case we need it in the future ...

Another Summary

"To achieve great things, two things are needed: a plan and not quite enough time" [Leonard Bernstein]

Thanks to many H1 and ZEUS colleagues for inspiring, educational and fun times over >20 years.

Thanks to A Cooper-Sarkar, M Klein, T Ullrich, M Wing and many others from whom I borrowed talk material

Back-ups / Rejects Follow

US Electron Ion Collider (EIC)

- eRHIC @ BNL: Add energy recovery LINAC in RHIC tunnel
- MEIC @ Jlab: Add figure of 8 hadron rings to CEBAF

- White paper 2012
- Construction Recommendation in NSAC Long Range Plan 2015
- User Group 2016
- DIS'16 pre-meet

Baseline LHeC Design (Electron "Linac")

- Two 10 GeV linacs inside LHC
- 3 returns, 20 MV/m
- Energy recovery in same structures
- CDR 2012, ongoing CERN-sponsored working

group, presented to ECFA 2015 + on NuPECC (long-term) roadmap

- Renewed interest following
 - 1) Possibility of 10³⁴ cm⁻² s⁻¹ luminosity
 - 2) Higgs discovery, searches and new measurements at LHC \rightarrow PDFs / QCD limit HL-LHC.
 - 3) Technical interest (high gradient cavities, ER linacs)
 - 4) Longer term perspective of FCC

What can be done with LHC alone?

At Q2=1.9 GeV2

- LHC = current LHC W, Z and jet data
- Remarkable what can be achieved with LHC data alone
- Can we improve substantially? Often already systs limited

Unprecendented low x reach for a spin DIS experiment, allowing quark and gluon contributions to nucleon spin to be pinpointed ⁴¹

Proton Tomography at EIC

<u>Correlations between</u> <u>parton longitudinal</u> <u>momenta and</u> <u>transverse</u> <u>positions:</u> GPDs... from DVCS & Vector Mesons

<u>Correlations between parton</u> momenta:

Sivers TMD distribution is single transverse spin Asymmetry \rightarrow low x

eA Collisions at EIC

Very large advance in eA kinematic range over previous (fixed target) facilities

- \rightarrow Nuclear Parton densities
- \rightarrow Potential access to low x

saturation region

→ Passage of 'struck' partons through cold nuclear matter

e.g. Possible saturation signatures in (coherent) vector meson production: $\gamma p \rightarrow \phi p$

Recent Developments

Post-CDR: LHeC Baseline Parameter

→ for first time a realistic option of an 1 ab⁻¹ electron-proton collider also due to excellent performance of LHC; ERL: 960 superconducting cavities (20 MV/m) and 9 km tunnel [arXiv:1211.5102, arXiv:1305.2090; EPS2013 talk by D. Schulte]

10 ³⁴ cm ⁻² s ⁻¹ Luminosity reach	PROTONS	ELECTRONS	PROTONS	ELECTRONS
Beam Energy [GeV]	7000	60	7000	60
Luminosity [10 ³³ cm ⁻² s ⁻¹]	16	16	1	1
Normalized emittance γε _{x,y} [μm]	2.5	20	3.75	50
Beta Funtion $\beta^*_{x,y}$ [m]	0.05	0.10	0.1	0.12
rms Beam size σ* _{x,y} [μm]	4	4	7	7
rms Beam divergence σ' * _{x,y} [µrad]	80	40	70	58
Beam Current [mA]	1112	25	430 (860)	6.6
Bunch Spacing [ns]	25	25	25 (50)	25 (50)
Bunch Population	2.2*10 ¹¹	4*10 ⁹	1.7*10 ¹¹	(1*10 ⁹) 2*10 ⁹
Bunch charge [nC]	35	0.64	27	(0.16) 0.32

Operations simultaneous with HL-LHC pp physics

Recent Developments

LHC programme runs to >2035. Longer term at CERN? \rightarrow FCC?

... CERN-sponsored ongoing work to evaluate how LHeC fits in.

→ Further develop physics aims, accelerator & detector, both LHeC & FCC

- \rightarrow Continue building collaboration
- \rightarrow Design ERL test facility @ CERN

ERL Test Facility:

- Test centre for accelerator development, LHeC prototype

- Most ambitious design (2 x 150 MeV linacs, 3 passes \rightarrow 900 GeV) has significant physics potential of its own (10⁴⁰ cm⁻² s⁻¹ fixed target) ... EW parameters, proton radius, photonuclear physics, dark photons ...

- Conceptual Design Report by end 2015

Measuring $\alpha_{\rm s}$

- Least constrained fundamental coupling by far (known to ~1%)
- Do coupling constants unify (with a little help rom SUSY?)
- Future measurement precision
 → per-mille (experimental) with
 LHeC, high energy lepton colliders

Important to check
compatibility between
different experiments
(and lattice)
Scale dependence
(running) also sensitive
to new effects

Context of Precision α_s

Snowmass13 report - arXiv:1310.5189

Method	Current relative precision		Future relative precision	
ata- out shapes	$expt \sim 1\%$ (LEP)		< 1% possible (ILC/TLEP)	
e e evi snapes	thry $\sim 1-3\%$ (NNLO+up to N ³ LL, n.p. sign	nif.) [27]	$\sim 1\%$ (control n.p. via $Q^2\text{-dep.})$	
atation interator	$expt \sim 2\%$ (LEP)		< 1% possible (ILC/TLEP)	
e'e jet rates	thry $\sim 1\%$ (NNLO, n.p. moderate)	[28]	$\sim 0.5\%$ (NLL missing)	
precision EW	$expt \sim 3\% (R_Z, LEP)$		0.1% (TLEP [10]), 0.5% (ILC [11])	ner mille
	thry $\sim 0.5\%$ (N ³ LO, n.p. small)	[9, 29]	$\sim 0.3\%$ (N4LO feasible, ~ 10 yrs)	per mine
τ decays	expt $\sim 0.5\%$ (LEP, B-factories)		< 0.2% possible (ILC/TLEP)	
	thry $\sim 2\%$ (N ³ LO, n.p. small)	[8]	$\sim 1\%$ (N ⁴ LO feasible, ~ 10 yrs)	
$\begin{array}{c} ep \text{ colliders} \\ \hline \end{array} \begin{array}{c} \sim 1-2\% \text{ (pdf fit dependent)} \\ \text{(mostly theory, NNLO)} \end{array} \begin{array}{c} [30,31], \\ [32,33] \end{array} \begin{array}{c} 0.1\% \\ \sim 0.1\% \end{array}$	$\sim 1-2\%$ (pdf fit dependent)	[30, 31],	0.1% (LHeC + HERA [23])	per mille
	$\sim 0.5\%$ (at least $\rm N^3LO$ required)	P er mine		
hadron colliders	$\sim 4\%$ (Tev. jets), $\sim 3\%$ (LHC $t\bar{t}$)		< 1% challenging	
	(NLO jets, NNLO $t\bar{t}$, gluon uncert.) [17]	7,21,34]	(NNLO jets imminent [22])	
lattice	$\sim 0.5\%$ (Wilson loops, correlators,)		$\sim 0.3\%$	
	(limited by accuracy of pert. th.)	[35–37]	(~ 5 yrs [38])	

... tensions between lattice and DIS α_s results as a sensitive probe of new physics?...

PDF Constraints at LHeC

Full simulation of inclusive NC and CC DIS data, including systematics \rightarrow NLO DGLAP fit using HERA technology...

- Low $x \rightarrow$ novel QCD / unitarity -Medium $x \rightarrow$ precision Higgs and EW (essentially removes Higgs PDF error)
- High $x \rightarrow$ new particle mass frontier
- Per-mille experimental α_s precision
- Full Flavour decomposition

Higgs Production at LHeC

Study of H \rightarrow bbbar in generic simulated LHC detector

 → Signal/Background ~ 1-2
 → ~1% H→bbbar coupling
 → Ongoing studies of ccbar
 → Lots of other possibilities to be evaluated

Higgs in e^-p	CC - LHeC	NC - LHeC	CC - FHeC
Polarisation	-0.8	-0.8	-0.8
Luminosity [ab ⁻¹]	1	1	5
Cross Section [fb]	196	25	850
Decay BrFraction	N_{CC}^{H}	N_{NC}^{H}	N_{CC}^{H}
$H \rightarrow b\overline{b}$ 0.577	113 100	13 900	$2\ 450\ 000$
$H \rightarrow c\overline{c}$ 0.029	5 700	700	123 000
$H ightarrow au^+ au^- 0.063$	12 350	1 600	270 000
$H \rightarrow \mu\mu$ 0.00022	50	5	1 000
$H \rightarrow 4l$ 0.00013	30	3	550
$H \rightarrow 2l 2 \nu$ 0.0106	2 080	250	45 000
$H \rightarrow gg$ 0.086	16 850	2 050	365 000
$H \rightarrow WW = 0.215$	42 100	5 150	915 000
$H \rightarrow ZZ$ 0.0264	5 200	600	110 000
$H \rightarrow \gamma \gamma$ 0.00228	450	60	10 000
$H \rightarrow Z\gamma$ 0.00154	300	40	6 500

Simulation of H \rightarrow bb Measurement at the LHeC, 100fb⁻¹ f_{OO} $f_{$

Estimated integrated Yields for 10 year programme.

Resolving Low x Physics at LHeC

Q² (GeV²) 10⁶ nuclear DIS - F, (x,Q2) Proposed facilities eA 10⁵ LHeC Fixed-target data: NMC 10⁴ E772 E139 10³ E665 e-Pb (LHeC) FMC (70 GeV - 2.75 TeV) 10² $Q_{i}^{2}(Pb, b=0 fm)$ 10⊨ perturbative non-perturbative т т т т т т т т т 10⁻⁶ 10⁻⁵ 10⁻³ 10⁻² 10⁻¹ 10⁻⁴

LHeC can distinguish between different QCD-based models for the onset of non-linear dynamics \rightarrow Unambiguous observation of saturation will be based on tension between different observables e.g. F₂ v F_L in ep or F₂ in ep v eA

Four orders of magnitude increase in eA kinematic range

More Final State Jet Legacy

- Discovered hard scattering in yp and used it to constrain the photon pdfs
- Led on how to treat underlying event and hadronisation effects

& how to search

Neutral Current Sensitivity to the Quarks

Unpolatised NC cross section depends on 3 structure fns ...

$$\tilde{\sigma}^{NC}(e^{\pm}p) = F_2 \mp \frac{Y_-}{Y_+} xF_3 - \frac{y^2}{Y_+} F_L$$

... where $Y_{\pm} = 1 \pm (1 - y)^2$

... and $\mathcal Y$ measures the process inelasticity

- F₂ dominates throughout most of the phase space
- xF₃ contributes at high Q² (Z exchange) can be obtained from difference between e⁺p and e⁻p cross sections
- F_L contributes at high y (longitudinally polarised photons)

Left v Right Hand Polarised Leptons

Significant NC lepton polarisation asymmetry observed ... tests vector and axial EW lepton couplings and d/u ratio as $x \rightarrow 1$

 $A = \frac{\tilde{\sigma}_{NC}(R) - \tilde{\sigma}_{NC}(L)}{\tilde{\sigma}_{NC}(R) + \tilde{\sigma}_{NC}(L)}$

More HERAoism & The Final State: A selection of personal favourites

4) There were no Pentaquarks,

- ... but were there Other strong interaction Exotics ...
- ... Glueballs?
- ... or instantons
- ... or odderons?

More HERAoism & The Final State: A selection of personal favourites

3) "Pioneered" jetSubstructure(cf LHC)... though there'sOther data here ...

Exclusive/Diffractive Channels & Low x Gluons

- 1) [Low-Nussinov] interpretation as 2 gluon exchange enhances sensitivity to low x gluon
- 2) Additional variable t gives access to impact parameter (b) dependent amplitudes
 - \rightarrow Large t (small b) probes densest packed part of proton?

HERA kinematic range

• Unprecedented low x and high Q² coverage in DIS!

 HERA + QCD factorisation
 → parton densities in full x range of LHC rapidity plateau

 Well established `DGLAP' evolution equations generalise to any scale (for not too small x)

e.g. pp dijets at central rapidity: $x_1=x_2=2p_t / \sqrt{s}$

The Power of Combinations: Precision Legacy

Beyond the $\sqrt{2}$ statistical improvement, effectively cross-calibrating to tackle (different) dominating H1, ZEUS systematics.

4 x e+p HERA-I lumi, 15 x e-p HERA-I lumi

Final uncertainty: < 1.5% for 3 < Q² < 500 GeV² < 3% up to Q² = 3000 GeV²

New Physics Legacy?

- There were moments of excitement (eg 1997) high Q²
 ... but signal sadly became less significant with further data.
- Despite huge number of searches and some world-leading sensitivity, HERA found the Standard Model ... 59

