

HERA results on proton structure and hard QCD

Nataša **Raičević** University of Montenegro on behalf of the H1 and ZEUS Collaborations

New Trends in High-Energy Physics

Budva, Montenegro, October 2nd - October 8th, 2016

HERA (DESY, Hamburg): 1992 - 2007

- Total lumi H1, ZEUS: 0.5 fb⁻¹ each HERA-I 1992-2000 ~120 pb⁻¹
 HERA-II 2003-2007 ~380 pb⁻¹
- Beams and energies $E_{e+/e-} = 27.6 \text{ GeV}$ $E_p = 820, 920 \text{ GeV (HERA-I)}$ $E_p = 920 \text{ GeV (HERA-II)}$ $E_p = 460, 575 \text{ GeV (Since April 2007 until the end of June)}$

Outline

- □ Combination of all inclusive NC and CC data from H1 and ZEUS experiments
- □ Last QCD fit from the combined data: HERAPDF2.0
- □ Combined EW and QCD fit of inclusive NC and CC data
- $\hfill\square$ (Multi)jets at low \mbox{Q}^2 and $\hfill a_s$
- $\hfill\square$ Prompt photon and jet production in DIS

Inclusive Deep Inelastic Scattering (DIS)

Charged Current (CC)

ZEUS CC event display

QCD 2010

Virtuality of exchanged boson:

$$Q^2 = -q^2 = -(k-k')^2$$

Fraction of proton momentum carried by struck quark

$$x = \frac{Q^2}{2p \cdot q}$$

Fraction of energy transferred from incoming lepton in proton rest frame

$$y = \frac{p \cdot q}{p \cdot k}$$

N. Raicevic

3

- Proton structure described by precise PDFs needed for making accurate predictions for any process involving protons
- □ DGLAP QCD evolution provides Q^2 dependence of the PDFs, x dependence must come from data. HERA covers the most important region for the LHC

NC and CC cross sections

Neutral current cross section

 $\begin{array}{l} \sigma_{cc}^{e^+p} \sim (x\overline{u} + x\overline{c}) + (1 - y)^2(xd + xs) \\ \sigma_{cc}^{e^-p} \sim (xu + xc) + (1 - y)^2(x\overline{d} + x\overline{s}) \end{array} \end{array} Sensitivity to the flavour of the valence distributions at high x$

- Direct measure of structure functions (various linear combinations of PDFs)
- HERA can disentangle proton PDFs with few assumptions

Combined NC and CC ep data

Eur. Phys. J. C75 (2015) 580

- To get high precision measurements of PDFs H1 and ZEUS results are combined into one coherent data set
- ▶ 41 NC and CC data sets from H1 and ZEUS collected over 15 years (1 fb⁻¹)
 0.045 ≤ Q² ≤ 50000 GeV², 6·10⁻⁷ ≤ x ≤ 0.65
- > Js = 318, 300, 251, 225 GeV
- Close to 3000 cross sections are combined to about 1300 points with 169 correlated syst. errors and χ²/d.o.f. = 1685/1620
 - → Significant reduction of statistical and systematic errors

> Total uncertainty less than 1.5 % for $Q^2 \le 500 \text{ GeV}^2$

EW effects at high Q²

Eur. Phys. J. C75 (2015) 580

- CC is two orders of magnitude smaller than NC at low Q² due to γ-exchange contribution
- CC and NC about the same size demonstrating electroweak unification at Q² around M_Z², M_W²
- P⁺p NC and e⁻p NC are the same at low Q², in the γ-exchange domain and differ at high Q² mainly due to γZ interference
- differences in e⁺p CC and e⁻p CC are related to u, d content of the proton and to helicity factors (1-y)²

Scaling violations

Eur. Phys. J. C75 (2015) 580

$$\sigma_{\text{NC}}(e^{\pm}p) = F_2 - \frac{y^2}{Y_+}F_L \mp \frac{Y}{Y_+}xF_3$$

- \succ F₂ scaling at moderate x
- precision measurement of scaling violations
 - → cross section rises with Q² at low x but drops at high x
- scaling violations at low x due to gluon splitting and at high x due to gluon emission
- Electroweak effects pronounced at high Q² (xF₃ contribution)

PDF determination

□ Parametrise the parton density functions at low starting scale $Q_0^2 = 1.9 \text{ GeV}^2$ by smooth analytic functions as $Ax^B(1 - x)^c(1 + Dx + Ex^2 ...)$

QCD analysis

- > Express the strange-quark distribution as an x-independent_fraction,_f_s= 0.4, of the d-type sea at Q_0^2 (xs=f_sxD=f_s(xd+xs))
- Use Thorne-Roberts general mass variable-flavor-number scheme RTOPT
- \succ M_c and M_b values optimized using HERA HF data
- > $a_s(M_Z^2)=0.118$ is consistent with HERA jet data
- Evolve these functions using the DGLAP equations to higher Q² and calculate x-sections
- Compare the calculation to experimental data
- $\hfill\square$ Minimisation of χ^2 adjusting the free parameters
- To safely remain in the kinematic region where pQCD is expected to be applicable, only cross sections for Q² starting from Q²_{min}= 3.5 GeV² are used

HERAPDF2.0

- Eur. Phys. J. C75 (2015) 580
- **Experimental uncertainties** were determined using the Hessian method with the criterion $\Delta \chi^2 = 1$ (68 % CL)
- □ Model uncertainties were evaluated by varying the assumptions (all variations are added in quadrature)

Variation	Standard Value	Lower Limit	Upper Limit
$Q_{\rm min}^2$ [GeV ²]	3.5	2.5	5.0
$Q_{\rm min}^2$ [GeV ²] HiQ2	10.0	7.5	12.5
$M_c(\text{NLO})$ [GeV]	1.47	1.41	1.53
M_c (NNLO) [GeV]	1.43	1.37	1.49
M_b [GeV]	4.5	4.25	4.75
f_s	0.4	0.3	0.5

Parameterisation uncertainties:

- variation in Q_0 (from 1.6 to 2.2 GeV²)
- parameterisation form of PDFs

Additional PDF sets

HERAPDF2.0 at NLO and NNLO with a scan of $a_s(M^2_Z)$ insteps of 0.001 HERAPDF2.0 at NLO and NNLO with Q²min = 10 GeV² HERAPDF2.0 at LO, NLO, NNLO with alternative gluon parameterisation (positive) HERAPDF2.0FF3A and FF3B with fixed flavor number schemes at NLO

H1 and ZEUS Combined QCD and EW fit

 \Box The structure functions can be separated into contributions from γ exchange, Z exchange and γ/Z interference

$$\tilde{F}_{2}^{\pm} = F_{2} + k(v_{e} \mp P_{e}a_{e})F^{\gamma}Z + k^{2}(v_{e}^{2} + a_{e}^{2} \pm P_{e}v_{e}a_{e})F^{\gamma}Z$$
$$x \tilde{F}_{3}^{\pm} = k(a_{e} \mp P_{e}v_{e})xF^{\gamma}Z + k^{2}(2v_{e}a_{e} \pm P_{e}(v_{e}^{2} + a_{e}^{2}))xF^{\gamma}Z$$

□ In QPM, SFs expressed in terms of light quark vector and axial-vector couplings to Z boson $[F_2, F^{v_2}, F^{Z_2}] = \sum [e^{2q}, 2e_qv_q, v^{2}_q + a^{2}_q](x q + x \overline{q})$ $x \tilde{F_3}^{\pm} = k(a_{e^{\mp}} P_e v_e) x F^{v_3} + k^2 (2v_e a_{e^{\pm}} P_e (v^{2}_e + a^{2}_e)) x F^{Z_3}$ $SM: a_f = I_{f,L}{}^{(3)} f = e, u, d$ $v_f = I_{f,L}{}^{(3)} - 2e_q sin^2 \theta_W$

$$k = \frac{Q^2}{(Q^2 + M_Z^2)^2} \frac{G_F M_Z^2}{2\sqrt{2}\pi a}$$

> Calculations in on-shel

scheme

$$_{G_{F}} = \frac{2\pi \alpha}{2\sqrt{2} M_{W}^{2}} (1 - \frac{M_{W}^{2}}{M_{Z}^{2}})^{-1} (1 + \Delta r)$$

$$\Delta r = \Delta r (a, m_Z, m_W, m_t, m_H..)$$

Determinations of light-quark couplings, mass of W, Weinberg-angle from the simultaneous QCD + EW fit (for H1 additional 4 free polar. values)
 QCD-EW fit following HERAPDF2.0 methodology

New results: ZEUS: Phys. Rev. D93 (2016) 092002 H1: H1prelim-16-041

H1 and ZEUS results on ligh quark couplings to Z boson

Phys.Rev. D 93 (2016) 092002, H1prelim-16-041

□ I nput data:

H1: Only H1 data: NC + CC HERA-I and HERA-II

ZEUS: Uncombined H1 and ZEUS data: NC + CC HERA-I and HERA-II

- Compatible results from H1 and ZEUS
- Results consistent with SM expectation
- Remarkable sensitivity of HERA data to u-type quark couplings
- Considerable improvement over published results of H1 from HERA-I data (Phys.Lett.B 632 (2006) 35)
 - → Significantly improved sensitivity using polarised HERA-II data
 - → Polarisation in HERA-II important particularly for vector couplings

Results consistent with other experiments

- LEP sign-ambiguity resolved
- u-type coupling highly accurate
 - → the most precise determination of the axial-vector and vector couplings₁₃ of the Z boson to u-type quarks

Standard Model parameters

H1: $m_w = 80.407 \pm 0.118(exp, pdf - fit) \pm 0.005(m_z, m_t, m_H)GeV$

ZEUS: $m_W = 80.68 \pm 0.28_{(exp/fit)} + 0.12 + 0.23_{-0.01(mod)} - 0.10(par)} GeV = 0.2252 \pm 0.0011_{(exp/fit)} + 0.0003 + 0.0001(mod)_{-0.0001(mod)} + 0.0001(mod)_{-0.001(mod)} + 0.0001(mod)_{-0.0001(mod)} + 0.00001(mod)_{-0.0001(mod)} + 0.0001(mod)_{-0.0001(mod)} + 0.00001($

- Unique measurement of weak mixing angle at different scales taking advantage of space-like momentum transfer
- $\hfill\square$ Results are compatible with precise value from PDG14 and the SM prediction for the running of the $\sin^2\!\theta_{\rm W}$

Multijet production in DIS at low Q^2

H1prelim-16-061, H1prelim-16-062

 \Box To obtain low Q² cross sections, the data are corrected for acceptance and resolution effects using a regularised unfolding procedure as it was done at high Q² (Eur. Phys. J. C75 (2015) 65)

s/ e_Nc/dP_T [1/GeV]

104 10

10

^{c/dP₁[1/GeV]}

6² 10⁻³

10.4 10-6 10

Inclusive jets

Inclusive jet, dijet and trijet cross sections, absolute and normalised to NC (full cancellation of normalisation uncertainties and partial cancellation of other exp. uncertainties) are measured in Q^2 and P_T jet bins $5.5 < O^2 < 80 \text{ GeV}^2$ and $P_{T}^{jet} > 4.5 \text{ GeV}$ (incl. jet)

Nc • First ever comparisons with brand new NNLO OCD calculations are presented for some of these norm. jet cross sections: Ne

- full NNLO from NNLOJET Phys. Rev. Lett. 117 (2016) 042001
- approximate NNLO from JetViP Phys. Rev. D 92 (2015) 074037

Also, new cross sections for $5 < p_T^{jet} < 7$ GeV in the range $150 < Q^2 < 15$ 000 GeV²

Multijet production in DIS at low Q^2

H1prelim-16-061, H1prelim-16-062

Detailed ratio to NLO prediction

- Data reasonably described by NLO (from NLOJET++), but NLO scale uncertainty large
- I mproved description of data (particularly in shape) by NNLO
 - → Significantly reduced scale uncertainty for higher values of jet p_T
- I mproved inclusive jet data description with aNNLO at high-p_T

Multijet production in DIS at low Q^2

 $<\!P_T^{jet}\!>_2>5.0~GeV$, $P_T^{jet}>4~GeV$

- Description of the data similar as in case of incl. jets
- No NNLO predictions for trijets available yet

- New normalised multijet data used for extraction of α_s(M_z)
 - Examine running of $a_s(\mu)$ in range $6 < \mu < 30 \text{ GeV}$
 - exp. precision about 0.4 %

Prompt photon accompanied by jet in DIS

ZEUS-prel-16-001

Photons are emitted from incoming or outgoing quark (QQ-photons) or lepton (LL-photons)

QQ – photons

γ is emitted from quark as part
 of hard process similar to multi-jets

LL - photons

 γ is radiated from incoming or outgoing lepton (theoretically very well determined)

□ Prompt photons unaffected by parton hadronisation

- → Provide information on the structure of the proton and give a probe of underlying partonic process
- → Complements previous result (Phys. Lett. B 715 (2012) 88)

Prompt photon accompanied by jet in DIS

ZEUS-prel-16-001

• $x_{\gamma'}x_p$ – fraction of incoming photon (proton) energy taken by γ +jet (parton)

 $\Delta \phi$, $\Delta \eta$ ($\Delta \phi_{e,\gamma}$, $\Delta \eta_{e,\gamma}$) - separations of photon and jet (scattered electron)

□ Djangoh (LL) and Pythia (QQ)*1.6

Reweighting of Pythia by 1.6 provides good description

- BLZ (Baranov, Lipatov, Zotov) model
- $\succ x_{\gamma}$ and $\Delta \eta$ distribution not desc 20 bed by k_{T} -factorisation

Summary

□ Finalisation of HERA inclusive NC and CC DIS cross sections and QCD fits

- ➤ H1 and ZEUS have combined all inclusive unpolarised measurements into one coherent data set for e⁺p and e⁻p collisions at √s = 318, 300, 251 and 225 GeV
- The combined inclusive HERA data are used as a sole input to the QCD analysis resulting in the set of parton distribution functions HERAPDF2.0

□ Determination of electroweak parameters from H1 and ZEUS

- ➤ High sensitivity to light quark couplings and SM parameters
- Provide important complementary tests of SM

□ Hard QCD

- Inclusive jets, dijets, trijets cross sections as well as those normalised to incl. NC cross section are now available for the whole Q² range, based on H1 data
- First ever comparisons with brand new NNLO QCD calculations is presented for some of these normalised jet cross sections; scale uncertainty is visibly reduced, shape is better described as compared to NLO
- > Experimental precision of a_s determination based on these data is now ~0.4% and is significantly better than theory uncertainty
- New results on prompt photon production in DIS from ZEUS data
 A direct tests of hard process

H1 and ZEUS NC and CC cross sections and PDFs

- H1 and ZEUS published high precision measurements of NC and CC cross sect.
 Q² from 0.045 GeV² to 40000 GeV²
 x from 6. 10⁻⁷ to 0.65
- > Allow PDFs to be extracted solely from these data
- □ To get high precision measurements of PDFs H1 and ZEUS results are combined → HERAPDF sets
- HERAPDF1.0 NLO: based on published NC+CC HERA-I data published (JHEP01 (2010) 109)
- HERAPDF1.5 NLO, NNLO and LO: based on preliminary NC+CC HERA-I + HERA-II data - preliminaries
- This talk: recently published results based on the combinations of complete HERA data and the QCD fit from this data: HERAPDF2.0 (at NLO, NNLO and LO)

QCD fits are performed using HERAFitter package (<u>www.herafitter.org</u>)

Eur.Phys.J. C75 (2015) no.12, 580

N. Raicevic

CC combined data – flavour decomposition C75(2015) 580

Structure functions F₂ and xF₃

Eur.Phys.J. C75(2015) 580

H1 and ZEUS

$$\frac{d^2 \sigma_{\text{NC}}(e^{\pm}p)}{dx dQ^2} = \frac{2\pi a^2}{xQ^4} Y_+ [F_2 - \frac{y^2}{Y_+}F_L \mp \frac{Y_-}{Y_+}xF_3]$$

> Scaling violations of F_2

F₂ rise towards low x becomes steeper as Q² increases

\rightarrow Increasing gluon density

□ xF3 obtained from subtracting the NC e⁺p from the NC e⁻p cross sections $x\tilde{F_3} = x\Sigma 2e_q a_q [q(x) - q(x)]$ $x\tilde{F_3}^{\gamma Z} = x\tilde{F_3}(Q^2 + M_Z^2) / a_e kQ^2 \approx (2u_v + d_v) / 3$

→Directly related to valence quarks

> Integrated over the range 0.016 < x < 0.725HERAPDF2.0 :1.165^{+0.042}_{-0.053} Data :1.314 ± 0.057(stat) ± 0.057(syst) 24

☐ Taking the full uncertainties into account, all PDFs are compatible

- **The largest relative discrepancy at** $x \sim 0.4$ (~ 2.5 σ) in the shape of the xu_v
- The gluon distribution of HERAPDF2.0 at NLO at high x is softer than that of the other PDFs

Trijet production in DIS at low Q²

