Dijet production at HERA and tests of QCD factorisation

Lidia Goerlich

Institute of Nuclear Physics PAN, Cracow on behalf of the H1 and ZEUS collaborations

- Diffraction in ep collisions
- Selection of diffractive events
- Diffractive parton distribution functions
- Exclusive dijet production in diffractive DIS
- Tests of QCD factorisation
- Summary

MPI @ LHC 2014
3-7 November, 2014
Kraków, Poland

HERA

$$E_{\rm e} = 27.6 \; {\rm GeV}$$

$$E_p = 920 - 460 \text{ GeV}$$

- HERA the world's only ep collider operated in 1992-2007 colliding electrons or positrons with protons
- two colliding beam experiments: H1 and ZEUS
- Nominal proton beam energy :

$$E_p$$
 = 820 / 920 GeV
 \sqrt{S} = 300 / 318 GeV, (HERA- I phase)
 E_p = 920 GeV
 \sqrt{S} = 318 GeV, (HERA- II phase)

Reduced proton beam energy :

$$E_p$$
 = 460 GeV, \sqrt{S} = 225 GeV, L_{int} = 12.4 pb⁻¹ E_p = 575 GeV, \sqrt{S} = 250 GeV, L_{int} = 6.2 pb⁻¹

Diffraction in ep collisions

Standard DIS variables:

- Q² |virtuality| of the exchanged boson
- x fraction of proton momentum carried by struck quark in Quark Parton Model
- y inelasticity, fraction of lepton energy transfered in the proton rest frame

 $Q^2 >> 1 \text{ GeV}^2$ deep inelastic scattering (DIS)

Q² ~ 0 GeV² photoproduction

Surprise of HERA: ~10% of DIS events have no activity in the forward direction (Large Rapidity Gap)

→ exchange of a colourless object (Pomeron, IP)

diffractive variables:

$$x_{I\!\!P} = \xi = rac{Q^2 + M_X^2}{Q^2 + W^2}$$

p-momentum fraction carried by IP

$$eta = rac{Q^2}{Q^2 + M_X^2} = rac{x}{x_{I\!\!P}}$$

IP-momentum fraction carried by struck quark

$$t = (p - p')^2$$

squared 4-momentum transfer at proton vertex

Diffractive dijet production

- Tests of QCD (inspired) models of diffraction
- Study factorisation properties of diffractive processes
- Probe partonic structure of diffractive exchange
 Diffractive dijets direct sensitivity to the gluon component of the Pomeron
- Search for physics beyond DGLAP parton evolution
 Diffraction at HERA low Bjorken-x phenomenon

. . .

Factorisation in hard diffraction

QCD hard scattering collinear factorisation (proven by Collins 1998):

$$d\sigma^{ep \to eXp}(\beta, Q^2, x_{IP}, t) = \Sigma f_i^{D}(\beta, Q^2, x_{IP}, t) \otimes d\sigma^{ei}(\beta, Q^2)$$

f_iD – diffractive parton density functions (DPDFs), DGLAP evolution in Q² σ^{ei} – partonic cross sections, same as in inclusive DIS

Proton vertex factorisation : separate (x_{IP}, t) from (β, Q^2) dependences (Ingelman & Schlein, 1985)

$$f_{i}^{D}(\beta, Q^{2}, x_{IP}, t) = f_{IP/p}(x_{IP}, t) \cdot F_{i}^{IP}(\beta, Q^{2})$$

No QCD basis, consistent with experimental data

Pomeron flux | Pomeron (Regge form) | structure function

Diffractive parton density functions

- Diffractive PDFs obtained through NLO DGLAP QCD fit to data
 - inclusive DDIS cross section \to diffractive gluon density weakly constrained at high $z_{IP} \to 2$ solutions H1 2006 Fit A and Fit B
 - combined fit to diffractive inclusive and dijet cross sections
 ⇒ comparable precision of quark and gluon densities for all z_{IP}
 (H1 2007 Jets DPDF, ZEUS DPDF SJ)

 z_{IP} = momentum fraction parton / IP

Diffractive scattering is dominated by gluons

(about 60-70 % of exchanged momentum, extending to large z)

Diffractive dijet production

dominant LO QCD diagram in diffractive DIS / direct photoproduction

LO QCD diagram in resolved photoproduction (γ interacts through its partonic structure)

Diffractive dijet photoproduction at HERA \rightarrow sensitive to multi-parton interactions which might occur in resolved photon processes in the presence of photon and Pomeron remnants \rightarrow breaking of QCD factorisation ?

Selection of diffractive events

ZEUS Leading Proton Spectrometer

Proton spectrometers:

- detection of elastically scattered protons → free of proton dissociation background
- low geometrical acceptance → low statistics
- direct measurement of t, x_{IP}
- high x_{IP} accessible

Large Rapidity Gap:

- selection of LRG adjacent to outgoing (untagged) proton
- high acceptance → more statistics
- integration over |t| < 1 GeV²
- background from proton dissociation into low mass resonances N*
- The 2 methods have different kinematical coverage, very different systematics

Exclusive dijet production in diffractive DIS

New ZEUS analysis of high statistics HERA - II data based on Large Rapidity Gap method

- e + p → e + p + jet + jet
- study of the nature of diffractive exchange
 - → investigation of azimuthal angular distribution
 (J. Bartels et al., Phys. Lett. B386 (1996) 389)

2 gluon exchange

Fully perturbative calculations based on proton PDF

(J. Bartels et al.)

boson-gluon fusion

Resolved Pomeron model (Ingelman & Schlein)

Diffractive dijet production in γ^* - IP CMS

Dijet azimuthal angle ϕ – angle between the lepton plane and the γ^* - dijet plane in the γ^* - IP rest frame

$$d\sigma/d\phi \propto 1 + A\cos(2\phi)$$

- models predict different shapes for dijet azimuthal angular distribution
- 2g exchange : negative A, maximum of dσ/dφ at φ = π/2
- boson gluon fusion : positive A, maximum of $d\sigma/d\phi$ at $\phi = 0$, π

Parton level predictions

2 gluon exchange

boson-gluon fusion

Exclusive dijet production in diffractive DIS

New ZEUS analysis of HERA - II data (L_{int} ≈ 370 pb⁻¹) based on Large Rapidity Gap method

- Q² > 25 GeV², 90 < W < 250 GeV x_{IP} < 0.01, 0.5 < β < 0.7 $p_{T jet}$ > 2 GeV (γ^* IP CMS)
- Durham exclusive k_t jet algorithm: final state objects are merged as long as $k_T^2 < y_{cut} \cdot M_X^2$, every object must be clustered into a jet
- Jet resolution parameter y_{cut} = 0.15 optimizes efficiency vs. purity of dijet sample

SATRAP:

- color dipole model with saturation
- qq and qqg in a final state
- good agreement with data
- used in unfolding procedure

Exclusive dijet production in diffractive DIS

- First measurement of the shape of the azimuthal angular distribution of exclusive dijets in DDIS
- The data favour two gluon exchange model of quark anti-quark production over boson-gluon fusion model

$$d\sigma \propto 1 + A\cos(2\phi), \quad A = -0.18 \pm 0.06(\text{stat.})^{+0.06}_{-0.09}(\text{sys.})$$

Test of QCD factorisation

Use HERA DPDFs and NLO QCD calculations to predict diffractive dijet production

Suppression factor S² = \sigma(data) / \sigma(theory_{NLO\ QCD})

- DIS : several measurements of H1 and ZEUS → QCD factorisation works within hard diffraction in DIS
- Factorisation breaking at the Tevatron (factor 10)

Phys. Rev. Lett. 84 (2000) 5043

Similar effect also observed at the LHC CMS: Phys. Rev. D87 (2013) 012006

• Photoproduction:

H1: breaking of QCD factorisation ($S^2 \sim 0.5 - 0.6$)

ZEUS: no factorisation breaking $(S^2 \sim 1)$

Diffractive dijet in photoproduction at HERA

Eur. Phys. J. C70 (2010) 15

$$E_{T}^{\text{jet1(2)}} > 5(4) \text{ GeV}$$

 $\sigma_{\rm DATA}/\sigma_{\rm NLO} \approx 0.6$

Nucl. Phys. B381 (2010) 1

$$E_{T}^{\text{jet1(2)}} > 7.5(6.5) \text{ GeV}$$

$$\sigma_{DATA}/\sigma_{NLO} \approx 1.0$$

- ullet The suppression is expected to be stronger at low scales and low ${f x}_{\gamma}$
- ullet ... but no evidence for the expected ${\bf x}_{\!\scriptscriptstyle \gamma}$ dependence of the suppression factor
- Factorisation breaking observed by H1 but not observed by ZEUS in slightly different phase space

Diffractive dijet production in DIS

- New H1 analysis of high statistics HERA II data based on Large Rapidity Gap selection
- $4 < Q^2 < 80 \text{ GeV}^2$, 0.1 < y < 0.7, $E_{T_{jet1(2)}}^* > 5.5(4) \text{ GeV}$, regularised unfolding procedure

- Data in agreement with the NLO QCD calculations (NLOJET++) using DPDF H1 2006 Fit B
 - → confirmation of QCD factorisation
- Data are more precise than theory predictions
 - → possible improvement of DPDF fits
 - \rightarrow possiblity of determination of the strong coupling constant α_s

Diffractive dijet production in DIS

New H1 analysis with proton measured in Very Forward Proton Spectrometer

- Data in agreement with NLO QCD calculations (NLOJET++) using DPDF H1 2006 Fit B → confirmation of QCD factorisation in DDIS
- Photoproduction events selected with same condition except for Q²

γp	DIS
$Q^2 < 2 \mathrm{GeV^2}$	$4 \mathrm{GeV^2} < Q^2 < 80 \mathrm{GeV^2}$
Common Cuts	
0.2 < y < 0.7	
$E_T^{*jet1} > 5.5 \text{GeV}$ $E_T^{*jet2} > 4.0 \text{GeV}$	
$-1 < \eta^{\text{jet1,2}} < 2.5$	
$0.010 < x_{I\!\!P} < 0.024$	
$ t < 0.6 { m GeV^2}$	
$z_{I\!\!P} < 0.8$	

Diffractive dijet in photoproduction

New H1 analysis with proton measured in Very Forward Proton Spectrometer

- The NLO QCD predictions (Frixione et. al) using DPDF H1 2006 Fit B overestimate the measured cross sections
- No indication of the higher supression factor at low x_{γ} , supression is almost independent on x_{γ}
- Hints for a higher supression at low E_T^{jet1}
- Problem of large theoretical uncertainties \rightarrow use cross section double ratio of data to NLO prediction for photoproduction and DIS

Proton-tagged diffractive dijets in photoproduction and DIS

The cross section double ratio of data to NLO prediction for photoproduction and DIS

Theoretical uncertainties

DPDFs uncertainty

Overall theoretical uncertainty

- QCD scale uncertainty:
 renormalisation and factorisation scales varied
 smultaneously in photoproduction and DIS
 by factor of 2 and ½
- double ratio of data / NLO →
 theoretical scale uncertainties & most of
 experimental uncertainties cancel

$$\frac{({\rm DATA/NLO})_{\gamma p}}{({\rm DATA/NLO})_{\rm DIS}} = 0.55 \pm 0.10 \, ({\rm data}) \pm 0.02 \, ({\rm theor.})$$

Confirmation of QCD factorisation breaking in diffractive dijet photoproduction (suppression not due to proton dissociation)

Proton-tagged diffractive dijets in photoproduction and DIS

The cross section double ratio of data to NLO prediction for photoproduction and DIS

No dependence of the suppression on z_{IP} and E_{T} of the leading jet

Summary

- New precise results on diffractive dijets from the H1 and ZEUS Collaborations
- The shape of the azimuthal angular distribution of exclusive dijets in diffractive DIS
 has been measured by ZEUS for the first time
 - → the data favour 2-gluon exchange model of qq production over boson gluon fusion model
- Dijet production with Large Rapidity Gap in diffractive DIS confirms QCD factorisation
- New H1 measurements of diffractive dijets in photoproduction and DIS with leading proton :
 - suppression factor of 0.55 in photoproduction independent of kinematics is consistent with breaking of QCD factorisation
 - the origin of different conclusions of H1 and ZEUS on factorisation breaking in photoproduction not explained