

HERAFitter

Open Source QCD Fit Platform to determine PDFs

Voica Radescu (DESY) for

the HERAFitter Team

Outline:

- Motivation
- Project Overview
- Application and Results

Motivation

- Parton Distribution Functions are essential for precision physics at the LHC:
 - PDF uncertainties affect substantially theory predictions for BSM high mass production
 - PDFs are one of the main theory uncertainties in Higgs production
 - PDFs are one of the main theory uncertainties in Mw measurement

- Uncertainties of experimental data
 - Differences among several groups: MSTW, CT, NNPDF, HERAPDF, ABM, JR
- ightarrow it is crucial to understand the theoretical differences
- \rightarrow it is important to provide accurate data (with correlation information) for better PDF discrimination

Proton Structure

W+charm \rightarrow direct sensitivity to s-quark

ttbar, single top \rightarrow gluon and u, d

Isolated photons \rightarrow gluon at medium and high x

W,Z production with jets \rightarrow gluon at medium x

Coverage in x is essential QCD evolution is in Q2

HERAFitter Project

HERAFitter is an open source QCD fit platform with a continuing rapid development

HERAFitter:

- is a unique framework to address the theoretical differences •
- provides means to the experimentalists to assess impact of new data

TLAS

CMS

'heor

ALICI

Schematics of PDF extraction in HERAFitter

A flow diagram of a PDF extraction in a QCD fit machinery:

On data side:

Important to provide correlation information

On theory side:

- Important to have fast tools to perform PDF fits i.e. APPLGRID, FASTNLO
 - \rightarrow grid techniques rely on factorisation theorem

HERAFitter

Heavy Flavour Schemes in DIS

Heavy quarks introduce additional scales which complicates the calculations:

VFNS (Variable Flavour Number Schemes):

- v RT-VFNS schemes \rightarrow as used by MSTW group
- v Zero Mass VFNS
- v ACOT schemes \rightarrow as used by CT(CTEQ) group

FFNS (Fixed Flavour Number Scheme)

- v via QCDNUM
- v Via Openqcdrad-1.6 \rightarrow as used by ABM
- → Variety of scheme options was studied by HERA in F2 charm HERA combined paper

Spread in predictions for W and Z is reduced significantly when predictions are evaluated at the optimal *Mc* determined from F2 charm

VUICA RAUESCU | QCD MORIOND | 2014

HERAFitter Quantitative Comparison between data and theory

HERAFitter provides a quantitative assessment of level of agreement between data and theory by taking into account theoretical and experimental uncertainties

$$\chi^{2} = \sum_{i} \left(\frac{\mu_{i} - m_{i} \left[1 + \sum_{j} b_{j}^{\exp} \gamma_{ji}^{\exp} + \sum_{j} b_{j}^{\text{theo}} \gamma_{ji}^{\text{theo}} \right]}{\Delta_{i}} \right)^{2} + \sum_{j} (b_{j}^{\exp})^{2} + \sum_{j} (b_{j}^{\text{theo}})^{2}$$

ATL-PHYS-PUB-2013-018

	Excluding PDF uncertainties $\mu_r = \mu_f = E_T^{\gamma}$ Envelope			Including PDF uncertainties $\mu_r = \mu_f = E_T^{\gamma}$ Envelope				
CT10	49.1	34.7	-	63.1	29.8	20.0	-	38.4
MSTW2008	39.9	27.2	-	52.7	32.0	21.3	-	42.3
ABM11_5N	16.2	9.2	-	25.5	15.7	8.9	-	24.9
HERAPDF1.5	28.7	19.0	-	38.9	23.6	15.7	-	32.0
NNPDF2.3	33.5	22.6	-	44.7	27.6	18.7	-	36.9

Used in ATLAS publications:

Voica Radescu | QCD MORIOND | 2014

Sensitivity to gluon and strong coupling:

Study sensitivity to the gluon PDF:

- Using ratio of jets at different beam energies ATLAS [EPJC (2013) 73 2509]
 - ∇ Benefits from cancellation of common sys. unc.
 - Compare the gluon for PDF fit using just HERA I and a fit using HERA I + ATLAS 2.76, 7 TeV jet data (2010)
- Using inclusive jet cross section at 7 TeV CMS data from 2011 (5/fb) [SMP-12-028]:
 - PDFs are extracted and compared to fits using just HERA I and fits using HERA I + CMS '7 TeV jet data

Extraction of the strong coupling [SMP-12-028]

From PDF and alphas simultaneous fit:

$$\alpha_S(M_Z) = 0.1192 \stackrel{+0.0017}{_{-0.0015}}$$

HERAFitte

Impact studies of LHeC on PDFs

[Journal of Phys. G 39 (2012)]

25 GeV

I HeC

HERAFitter provides the possibility to perform impact studies using simulated data:

• LHeC can provide a complete PDF set with precise gluon, valence, and strong coupling:

HERAFitter provides LHAPDF grids:

14 TeV gg \rightarrow H total cross section at the LHC calculated for a variety of PDFs at 68% CL

- precision from LHeC can add a very significant constraint on the mass of the Higgs
- LHeC-NLO. LHgrid available in lhapdf v5.9.1

case	cut $[Q^2$ in GeV	relative precision in $\%$
HERA only (14p)	$Q^{2} > 3.5$	1.94
HERA+jets (14p)	$Q^2>3.5$	0.82
LHeC only (14p)	$Q^{2} > 3.5$	0.15
LHeC only (10p)	$Q^2 > 3.5$	0.17
LHeC only (14p)	$Q^2 > 20.$	0.25
LHeC+HERA (10p)	$Q^{2} > 3.5$	0.11
LHeC+HERA (10p)	$Q^{2} > 7.0$	0.20
LHeC+HERA (10p)	$Q^2 > 10.$	0.26

LHeC promises per mille accuracy on alphas – using HERAFitter

ABM1

JR09VF

Voica Radescu | QCD MORIOND | 2014

50

48

46

44

HERAFitter Prospects

HERAFitter has a modular structure facilitating fast developments

• Many new developments are planed to be implemented in future releases:

HERAFitter Summary and Prospects

- HERAFitter is an open source QCD Framework and it has proved to be a successful platform that is well integrated in the high energy physics community:
 - $\rightarrow~$ driven by the abundant data in need for a careful QCD investigation
- HERAFitter infrastructure has increased the scientific output of the HERA and LHC data, provides a flexible environment for theory benchmarking.
 - v Various treatments for heavy flavours;
 - v Various options for data uncertainties treatment;
 - v Various parametrisation techniques;
 - v Various physics cases.
 - **theory:** include new state of the art developments (i.e. ttbar differential cross-section)
 - **experiment:** include new observables/measurements to improve PDFs

Stable release: herafitter-1.0.0

www.herafitter.org

We welcome new developments!

Results using HERAFitter

- Following PDF grids have been generated since the start of the project:
 - HERAPDF1.0, HERAPDF1.5, ATLAS-epWZ12, LHeC-NLO
- HERAFitter has been used in the following publications:

K	

" Determination of the strange quark density of the proton from ATLAS measurements of the W and Z cross sections" [PRL 109(2012)012001]

"Measurements of the inclusive jet cross section in pp collisions at 2.76 TeV and comparison to the inclusive jet cross section at 7 TeV using the ATLAS detector" [EPJC (2013) 73 2509]

"Measurement of the high-mass Drell-Yan differential cross-section in pp collisions at 7 TeV with the ATLAS detector" [PLB 725 (2013) 223]

"Measurement of the production of a W boson in association with a charm quark in pp collisions at sqrt(s)=7 TeV with the ATLAS detector"[]

"A study of the sensitivity to the proton parton distributions of the inclusive photon production cross section in \$pp\$ collisions at 7 TeV measured by the ATLAS experiment at the LHC"

" Measurement of the muon charge asymmetry in pp W production at 7 TeV" [SMP-12-021] " PDF constraints and extraction of the strong coupling constant from the inclusive jet cross section at 7 TeV" [SMP-12-08]

" Combination and QCD Analysis of Charm Production Cross Section Measurements in Deep Inelastic ep Scattering at HERA" [EPJC (2013) 73 2311]

"Inclusive Deep Inelastic Scattering at High Q2 with Longitudinally Polarised" [JHEP 1209 (2012) 061]

LHeC impact studies [Journal of Phys. G 39 (2012)]

"Parton Distribution Uncertainties using Smoothness Prior" [PLB 695 (2011) 238]

Extra Slides

Functional Forms for PDF parametrisation

- PDFs are parametrised at a starting scale as function of x, QCD evolves them in Q2
- Various functional forms can be tested within HERAFitter platform:
 - Standard Polynomials:

$$xf(x) = Ax^B(1-x)^C P_i(x),$$

• Log-Normal Distributions:

$$xf(x) = x^{p-b\log(x)}(1-x)^{q-\log(1-x)}$$

• Chebyshev Polynomials:

$$xg(x) = A_g(1-x) \sum_{i=0}^{N_g-1} A_{g_i} T_i \left(-\frac{2\log x - \log x_{min}}{\log x_{min}} \right),$$

$$xS(x) = (1-x) \sum_{i=0}^{N_S-1} A_{S_i} T_i \left(-\frac{2\log x - \log x_{min}}{\log x_{min}} \right).$$

• Use of External PDFs via LHAPDF interface to construct theoretical predictions.

Chi square definitions

- Typical measurements sensitive to PDFs are precise, with statistical uncertainties below 10%, so they follow normal distribution which allows use of chi square minimization for determining optimal PDF parameters.
- The HERAFitter package allows for various types of data uncertainty treatment:
 - Various chi square representations:
 - Covariance Matrix Representation:

$$\chi^{2}(m) = \sum_{i,j} (m_{i} - \mu_{i}) C_{ij}^{-1} (m_{j} - \mu_{j}) \qquad C_{ij} = C_{ij}^{stat} + C_{ij}^{uncor} + C_{ij}^{sys}$$

• Nuisance Parameters Representation:

$$\chi^{2}(m,b) = \sum_{i} \frac{\left[m^{i} - \sum_{j} \gamma_{j}^{i} m^{i} b_{j} - \mu^{i}\right]^{2}}{\delta_{i,\text{stat}}^{2} \mu^{i} \left(m^{i} - \sum_{j} \gamma_{j}^{i} m^{i} b_{j}\right) + \left(\delta_{i,\text{uncor}} m^{i}\right)^{2}} + \sum_{j} b_{j}^{2}.$$

$$\mu^{i} \text{ is the measured central value}$$

• Mixed form (covariance and nuisance parameter):

HERAFitter offers the possibility to include form of treating statistical, uncorrelated and correlated systematic uncertainties given in different forms.

Experimental Uncertainties

HERAFitter allows for various types of data uncertainty treatment:

• Hessian and toy Monte Carlo error propagation

 \rightarrow Monte Carlo Method for error estimation compared to Hessian error propagation:

- Benchmarking exercise with NNPDF group [arXiv:0901.2504]
- Regularisation methods: to constrain PDFs in a flexible parametrisation style:
 - Data Driven Regularisation (as used by NNPDF): fit and control samples
 - External Regularisation based on a penalty term in chisquare
- Possibility to include asymmetric unceratinties.

Low x Physics

As an alternative to DGLAP, HERAFitter includes also Dipole models:

- Studied by the H1 collaboration in comparing different models on FL:
 - Dipole Models implemented in HERAFitter:

Unintegrated PDFs based on the kT-factorisation (CCFM) evolution.

applicable only to NC ep scattering: <u>https://www.herafitter.org/HERAFitter/HERAFitter/HERAFitterMeetings/Meeting2012-</u> <u>Oct-29?action=AttachFile&do=get&target=updf.pdf</u>

Diffractive DIS PDF fits.

List of analyses using HERAFitter

Date	Group	Reference	Title
NEW 02.2014	LHC/ATLAS	arXiv:1402.6263	Measurement of the production of a W boson in association with a charm quark in pp collisions at sqrt(s)=7 TeV with the ATLAS detector
NEW 01.2014	R. Sadykov	arXiv:1401.1133	Impact of QED radiative corrections on Parton Distribution Functions
NEW 01.2014	F. Hautmann and H. Jung	arXiv:1312.7875	Transverse momentum dependent gluon density from DIS precision data
NEW 12.2013	A. Luszczak and H. Kowalski	arXiv:1312.4060	Dipole model analysis of high precision HERA data
12.2013	LHC/ATLAS	ATL-PHYS-PUB-2013-018	• A study of the sensitivity to the proton parton distributions of the inclusive photon production cross section in \$pp\$ collisions at 7 TeV measured by the ATLAS experiment at the LHC
12.2013	LHC/CMS	CMS-SMP-12-021 / arXiv:1312.6283	Measurement of the muon charge asymmetry in pp W production at 7 TeV
12.2013	LHC/CMS	CMS-SMP-12-028	PDF constraints and extraction of the strong coupling constant from the inclusive jet cross section at 7 TeV
2013	LHC/ATLAS	Phys. Lett. B 725 (2013) pp. 223	Measurement of the high-mass Drell-Yan differential cross-section in pp collisions at sqrt(s)=7 TeV
2013	LHC/ATLAS	EPJC (2013) 73 2509	Measurement of the inclusive jet cross section in pp collisions at sqrt(s) = 2.76 TeV and comparison to the inclusive jet cross section at sqrt(s) = 7 TeV using the ATLAS detector
2013	LHC/ATLAS	Phys.Rev.Lett. 109 (2012) 012001	• Determination of the strange quark density of the proton from ATLAS measurements of the W -> I nu and Z -> II cross sections
2013	HERA/H1 and ZEUS	Eur. Phys. J. C73 (2013) 2311	Combination and QCD Analysis of Charm Production Cross Section Measurements in Deep-Inelastic ep Scattering at HERA
2012	HERA/H1	JHEP 09 (2012) 061	Inclusive Deep Inelastic Scattering at High Q2 with Longitudinally Polarised Lepton Beams at HERA
2012	LHeC	J.Phys. G39 (2012) 075001	A Large Hadron Electron Collider at CERN: Report on the Physics and Design Concepts for Machine and Detector

HERAFitter @ HERA

- HERAFitter roots to the PDF analyses performed by H1 and ZEUS:
 - HERAPDF1.0 HERAPDF1.5 (LO/NLO/NNLO)

Motivation

- Parton Distribution Functions are essential for precision physics at the LHC:
 - PDFs are one of the main theory uncertainties in Mw measurement
 - PDF uncertainties also affect substantially theory predictions for BSM high mass production

LHC 8 TeV - iHixs 1.3 NNLO - α_s = 0.119 - PDF uncertainties

- PDF uncertainties arise from:
 - Precision of experimental data
 - Differences among several groups:
 - v MSTW, CT, NNPDF, HERAPDF, ABM, JR
 - v Current benchmarking of PDFs →
 10% differences among PDF groups for
 predictions for the Higgs cross section

http://nnpdf.hepforge.org/html/pdfbench/catalog/pdfbenchcatalog.pdf

- ightarrow it is crucial to understand the theoretical differences
- ightarrow it is important to provide accurate data for better PDF discrimination