

Jan Figiel

Institute of Nuclear Physics, Kraków on behalf of the H1 and ZEUS collaborations

we investigate the **fundamental forces** and **particles** in e p collisions at highest energies – quark and gluon interactions, we verify the Standard Model and seek "new physics" among the other - studying **heavy meson** production ...

Hadron production in e-p interactions: (1)

HERA: e[±] (27.5 GeV) – p (820/920/575/460 GeV)

 $\rightarrow \qquad \gamma^* p \rightarrow hadrons$

$Q^2 \approx 0$	(quasi-)	photoproduction	(PHP)
-----------------	----------	-----------------	-------

 $Q^2 > 0$ deep inelastic scattering (DIS)

DIS (Quark/parton model, QPM):

 γ^* proton = sum of inter. γ^* quark/parton parton fragmentation \rightarrow hadrons \approx mesons (!) = factorisation of the "hard" and "soft" interaction

- Proton structure, quarks, gluons...
- Quantum Chromodynamics (QCD)

- theory of quarks and gluons interactions

 $Q^2 - \gamma^*$ virtuality $(0 - 10^5 \text{ GeV}^2)$ $s \approx E_e E_p, \quad \sqrt{s} \approx 300 \text{ GeV}$ $W - \gamma^* p$ CMS energy (20 -290 GeV) $x \approx Q^2/W^2$ - Bjorken x = fractional parton momentum in proton Breit frame $y \approx Q^2/(sx)$ - fractional energy transfer to p

Hadron production in e-p interactions: (2)

Heavy meson production at HERA

- Diffractive charmonium production:
 Elastic and proton-dissociative J/Ψ photoproduction
 Ψ'/Ψ ratios
- Inelastic J/Ψ production
- Open charm production:

Fragmentation of charmed mesons

Charm in proton structure function

Diffractive meson production at HERA(1)

elastic (exclusive)

proton dissociative

|t|<1 GeV²

Q ²	photon virtuality	$Q^2 = -q^2 = -(k - k')^2$
W	CMS energy of yp system	$W^2 = (q + P)^2$
t	(4-mom. transfer) ² at p-vertex	$t = (P - P')^2$
х	Bjorken x = fractional parton momentum in proton Breit frame	$x \approx \frac{Q_2}{W_2}$

Diffractive meson production at HERA (2)

•
$$\sigma_{_{VMp}} \sim (xg(x))^2 \sim W^{0.7}$$
 !!!

• $b \ll 10 \text{ GeV}^2$, weak shrinkage

VM at HERA: transition between soft and hard regime; testbed of QCD scales

Diffractive meson production at HERA (3)

Proton-dissociative VM production...

Colourless exchange (Pomeron) in QCD = ?...

 $\gamma p \rightarrow J/\psi Y \rightarrow \mu^+ \mu^- Y$, proton <u>dissociates</u>...

Large $M_{_{J/\psi}}, |t| \rightarrow$ perturbative QCD

 $d\sigma/dt~\sim~|t|^{\text{-n}}$

- 2-gluon exchange $-\sigma(W) = const!$
- gluon "ladder" exchange \rightarrow

 $\text{DGLAP} - \sigma(W) \approx \text{const}(W)$

BFKL – $\sigma(W) \uparrow$, $W \uparrow \dots$!

Gluon cascade dynamics:

- Dokshitzer, Gribov, Lipatov, Altarelli, Parisi (DGLAP): gluon transverse momenta ordered, ewolution in Q²
- Balitsky, Fadin, Kuraev, Lipatov (BFKL): no ordering of gluon transverse momenta, ewolution with x (1/W)

Charmonium production at HERA (1)

H1 (EPJ **C73** (2013) 2466): Elastic and Proton-dissociative Php of J/ Ψ Mesons at HERA HE: $\sqrt{s} \approx 318$ GeV, LE: $\sqrt{s} \approx 225$ GeV

Energy dependence

Simultaneous fit of elastic and p-diss. cross section ($\sigma \sim W^{\delta}$):

 $\delta_{el} = 0.67 \pm 0.03, \qquad \delta_{p-diss} = 0.42 \pm 0.05$

Charmonium production at HERA (2)

Energy dependence

H1 fit extrapolation to higher energy describes LHCb data as well!

Charmonium production at HERA (3)

Energy dependence

- LO and NLO fits to previous J/Ψ data from HERA (gluon densities!)
- Both fits extrapolated to higher energies...
- LO extrapolation describes LHCb data.

Charmonium production at HERA (4)

Energy dependence compilation

VMs: bigger "hard" scale Q²+M² – steeper rise with W, Q²+M² scale governs "soft" – "hard" interaction transition
 DVCS: always steep rise with W – "hard" interaction...

Charmonium production at HERA (5)

t-dependence

Charmonium production at HERA (6)

t-dependence

t-dependence compilation

Decreasing slope (and interaction size) with rising scale Q^2+M^2 -

- transition between "soft" and "hard" interaction

Ψ(2s)/Ψ(1s) ratios (1)

Ratio R = $\sigma(\Psi(2s)/\sigma(J/\Psi(1s) =>$

=> sensitive to radial charmonium wave function...

 $\Psi(2s)$ wave function $\neq J/\Psi(1s)$ w. f.: it has node at $r \approx 0.4$ fm,

 $< r^{2}(\Psi(2s)) = 2 < r^{2}(J/\Psi(1s)) >$

pQCD prediction: $R \approx 0.17$ (Q² = 0) and rises with Q² (J. Nemchik et al., 1994, 1998)

$\Psi(2s)/\Psi(1s)$ ratios (2)

ZEUS preliminary, DIS2014: HERA II, int. lumi = 354 pb^{-1}

Ψ(2s)/Ψ(1s) ratios (3)

ZEUS preliminary DIS2014: HERA II, int. lumi = 354 pb^{-1}

$\psi(2S)$ decay mode	$\sigma(\psi(2S))/\sigma(J/\psi(1S))$
$f ightarrow J/\psi (ightarrow \mu^+ \mu^-) \pi^+ \pi^-$	$0.29\pm0.04^{+0.02}_{-0.01}$
$ ightarrow \mu^+\mu^-$	$0.25\pm0.05^{+0.04}_{-0.02}$
combined	$0.28\pm0.03^{+0.02}_{-0.01}$

 $\begin{array}{l} 30 \leq W \leq 210 \; \text{GeV} \\ 5 \leq Q^2 \leq 70 \; \text{GeV}^2 \\ |\mathsf{t}| \leq 1 \; \text{GeV}^2 \end{array}$

• Independent of W and t

W (GeV)

Ψ(2s)/Ψ(1s) ratios (4)

ZEUS - **H1** comparison:

• ZEUS data analysed in Q^2 bins used by H1 (Q^2 : 5 — 12 and 12 — 80 GeV²)

40 < W < 180 GeV 1 < Q² < 80 GeV²

Eur.Phys.J.C10:373-393,1999

Inelastic Ψ and Ψ ' production (1)

Color **S**inglet model **CS**: cc q.n. = J/Ψ q.n. Color Octet model CO: cc q.n. \neq J/ Ψ q.n.

Inelastic Ψ and Ψ ' production (2)

ZEUS, JHEP 02 (2013) 071

ZEUS

60 < W < 240 GeV

Inelastic Ψ and Ψ ' production (3)

Inelastic Ψ and Ψ ' production (4)

Left theory: full NLO computation including CS and CO terms

Right theory: LO CS model framework amended with non zero initial state gluons k_T

=> better description of the data from k_{τ} factorisation

Open charm production (1)

$$D^+ = c\bar{d}, \ D^0 = c\bar{u}, \ \bar{D}^0 = \bar{c}u, \ D^- = \bar{c}d$$

- Predominantly boson-gluon fusion
- Charm contribution to inclusive DIS at HERA up to 30%
- Multi-scale problem: Q^2 , M_c^2 , p_T^2
- sensitive to c-quark mass...
- sensitive to gluon density in the proton (PDFs)
- Test of pQCD NLO calculations (various mass schemes!)
- Can extract charm contribution to proton structure function
- Charm quark hadronisation to charmed hadrons -
 - test of fragmentation universality

Open charm production (2)

ZEUS, **D[±] production in DIS**, JHEP **05** (2013) 023, HERA II, 354 pb⁻¹

Open charm production (3)

ZEUS, **Charm fragmentation fractions in PHP**, JHEP **09** (2013) 058, HERA II, 372 pb^{-1,} 130 < W 300 GeV

 $egin{aligned} D^0 &
ightarrow K^- \pi^+, \ D^+ &
ightarrow K^- \pi^+ \pi^+ \ D^{*+} &
ightarrow D^0 \pi^+_s
ightarrow K^- \pi^+ \pi^+_s \ D^+_s &
ightarrow \phi \pi^+, \ \Lambda^+_c &
ightarrow K^- p \pi^+ \end{aligned}$

Open charm production (4)

ZEUS, **Charm fragmentation fractions in PHP**, JHEP **09** (2013) 058, HERA II, 372 pb^{-1,} 130 < W 300 GeV

ep PHP, ep DIS and e^+e^- agree => universality of heavy quark fragmentation!

Open charm production (5)

H1 + ZEUS: HERA charm data combination in DIS, EPJ C73 (2013) 2311 Charm structure functions etc.

"Visible" charm
cross-section
$$\sigma^{cc}_{vis}$$
 \longleftrightarrow "reduced" charm
cross-section σ^{cc}_{red} \longleftrightarrow Charm structure
function F^{cc}_{2}
(NLO pQCD model dependent!)

$$\frac{d^{2}\sigma^{c\bar{c}}}{dxdQ^{2}} = \frac{2\pi\alpha^{2}(Q^{2})}{xQ^{4}}([1+(1-y)^{2}]F_{2}^{c\bar{c}}(x,Q^{2}) - y^{2}F_{L}^{c\bar{c}}(x,Q^{2})).$$

$$\sigma^{c\bar{c}}_{red} = \frac{d^{2}\sigma^{c\bar{c}}}{dxdQ^{2}} \cdot \frac{xQ^{4}}{2\pi\alpha^{2}(Q^{2})(1+(1-y)^{2})}$$

$$= F_{2}^{c\bar{c}} - \frac{y^{2}}{1+(1-y)^{2}}F_{L}^{c\bar{c}}.$$

$$\sigma^{c\bar{c}}_{red}(x,Q^{2}) = \sigma_{vis,bin}\frac{\sigma^{c\bar{c},th}_{red}(x,Q^{2})}{\sigma^{th}_{vis,bin}}.$$

Open charm production (6)

H1 + ZEUS: HERA charm data combination in DIS, EPJ C73 (2013) 2311

Open charm production (7)

H1 + ZEUS: HERA charm data combination in DIS, EPJ C73 (2013) 2311

Summary

- HERA was heavy meson factory: only selected, recent results were presented
- Diffractive and inelastic charmonium production:
 – semi-quantitative succes of
 perturbative QCD
- Heavy flavour mesons perturbative QCD at work
- Charm contribution to proton structure well understood within pQCD framework
- Quality and amount of HERA data challenge for pQCD calculations