LOW X MEETING

YUKAWA INSTITUTE, KYOTO, JAPAN

June 17-21 2014

Measurement of the longitudinal structure function $\boldsymbol{F}_{\scriptscriptstyle L}$

S. Shushkevich on behalf of H1 and ZEUS collaborations

Eur. Phys. J. C 74 (2014) 2814 [arXiv:1312.4821] (H1 experiment)

DESY-14-053, submitted to Phys. Lett. B [arXiv:1404.6376] (ZEUS experiment)

HERA ep Collider

- experiments: H1 and ZEUS
- 0.5 fb⁻¹ per experiment
- e⁺ and e⁻

Deep Inelastic Scattering (DIS) and Neutral Current (NC)

$$s = (k+P)^{2}$$

 $Q^{2} = -q^{2} = (k-k')^{2}$

$$x = \frac{Q^2}{2(Pq)}$$

$$y = \frac{(Pq)}{(Pk)}$$

centre-of-mass energy squared

boson virtuality negative transferred 4-momentum squared

Bjorken x momentum fraction of proton carried by the struck quark

inelasticity

related as
$$Q^2 = sxy$$

The Proton Structure and F_L Structure Function

At moderate Q^2

reduced cross cross section structure functions section measurement
$$\tilde{\sigma}_{NC}(x,Q^2,\mathbf{y}) = \frac{d^2\sigma_{NC}^{ep}}{dxdQ^2} \cdot \frac{xQ^4}{2\pi\alpha Y_+} = F_2(x,Q^2) - \frac{\mathbf{y}^2}{Y_+} F_L(x,Q^2)$$
$$Y_+ = 1 + (1-y)$$

In QPM:
$$F_2(x,Q^2)=\sum e_{q_i}^2x(q_i+\bar{q}_i)$$
 Total quark content $F_L(x,Q^2)=F_2-2xF_1=0$ Callan-Gross relation

The QCD lowest order in α : add gluon to carry angular momentum

$$F_L(x, Q^2) = \frac{\alpha_s}{4\pi} x^2 \int_x^1 \frac{dz}{z^3} \left[\frac{16}{3} F_2 + 8 \sum_q e_q^2 (1 - \frac{x}{z}) \cdot xg \right]$$

- F_L is a QCD effect which allows for a critical test of perturbative QCD
- F₁ is directly sensitive to the gluon density
- To disentangle F_2 and F_L fix x and Q^2 , vary y $y = \frac{Q^2}{sx}$

NC Event in the Detector

$$y_e = 1 - \frac{E'_e}{E_e} \sin^2 \frac{\Theta_e}{2}$$
 $Q_e^2 = \frac{E'_e^2 \sin^2 \frac{\Theta_e}{2}}{1 - y_e}$

$$Q_e^2 = \frac{E_e^{'2} \sin^2 \frac{\Theta_e}{2}}{1 - y_e}$$

Kinematics

$$\tilde{\sigma}_{NC}(x, Q^2, \mathbf{y}) = F_2(x, Q^2) - \frac{\mathbf{y}^2}{Y_+} F_L(x, Q^2)$$

Sensitivity to F_L at high y

$$y_e = 1 - \frac{E_e'}{E_e} \sin^2 \frac{\Theta_e}{2}$$

Accept scattered electron candidates down to 3 GeV (H1) / 6 GeV (ZEUS)

Harsh background conditions due to $\pi^0 \rightarrow \gamma \gamma$ decays misidentification of charged hadrons semi-leptonic decays of heavy flavour hadrons

$$Q_e^2 = \frac{E_e^{'2} \sin^2 \frac{\Theta_e}{2}}{1 - y_e}$$

To access low Q² measure sample with shifted vertex (ZEUS)

γp Background Treatment at High y

Apply neural network to select electrons for $E'_{e} \le 10 \text{ GeV}$

shower shape variables ionisation energy loss dE/dx momentum matched track associated to the cluster

Make use of the electric charge of the electron candidate

- determine the charge from the track
- eliminate half of the background by requiring the "right" charge candidates
- estimate remaining half using "wrong" charge candidates
- take into account charge asymmetry for data and MC efficiency of charge determination

Estimate remaining non-photoproduction background using simulation

Control Plots for the High y Analysis (H1)

Vertex Distribution Description (ZEUS)

About 10% of events are in sample with shifted vertex due to presence of the satellite bunches

Make use of a special clean DIS sample and use 10 Gaussians for the accurate fit and MC reweighing

Good description of data by simulation

Control Plots (ZEUS)

Nominal vertex sample ($-30 < Z_{vtx} < 30 \text{ cm}$)

Control Plots (ZEUS)

Satellite vertex sample $(30 \le Z_{vtx} \le 100 \text{ cm})$

NC Cross Section for E = 460, 575, 920 GeV (H1)

Cross section measurements at (x, Q2) points at different s

Data are from both high Q² and medium and low Q² analysis

F₁ Structure Function Extraction: Linear Fit

$$\tilde{\sigma}_{NC}(x, Q^2, \mathbf{y}) = \frac{d^2 \sigma_{NC}^{ep}}{dx dQ^2} \cdot \frac{xQ^4}{2\pi\alpha Y_+} = F_2(x, Q^2) - \frac{\mathbf{y}^2}{Y_+} F_L(x, Q^2) \qquad \mathbf{y} = \frac{Q^2}{sx}$$

- Sensitivity to F₁ at high y only
- At (x, Q^2) fixed: change $s \rightarrow$ change y
- Extraction of F_L and F₂
 measure at different s and do linear fit
- Results are model independent

The Longitudinal Structure Function $F_L(x, Q^2)$

Model independent extraction

Good description by the NLO theoretical prediction

The Longitudinal Structure Function $F_L(Q^2)$

Average F₁ measurement over x at each Q² to reduce statistical uncertainty

Probability of agreement is about 20%

Good agreement between the NNLO predictions and the measurement Additional constraints to PDF's at low Q²

The Ratio R = σ_{L} / σ_{T} Extraction

For $\gamma * p$ R measures interaction with longitudinally polarized virtual photon. Relation between F_1 and R: $F_2 = F_2 * R/(R+1)$.

R is approximately constant. Constant value fit gives

H1
$$0.23 \pm 0.04$$

ZEUS
$$0.105 + 0.055 - 0.037$$

The Gluon Density Extraction

- Shaded area prediction from the QCD fit
- Data and dashed line extraction at order α_s from the F_L measurement and prediction

$$xg(x,Q^2) \approx 1.77 \frac{3\pi}{2\alpha_S(Q^2)} F_L(x,Q^2)$$

A.M. Cooper-Sarkar et al., Z. Phys. C39 (1988) 281 E.B. Zijlstra, W.L. van Neerven, Nucl. Phys. B 383 (1992) 525 G. R. Boroun, B. Rezaei, Eur. Phys. J. C72 (2012) 2221 G. R. Boroun, B. Rezaei, arXiv:1401.7804.

Agreement between direct gluon density extraction and indirect measurement from scaling violations

Conclusions

- New measurement of NC DIS cross section at different centre-of-mass energies by H1 and ZEUS
- Model independent extraction of the F_L and F₂ structure functions
- Measurement of the ratio R of longitudinally and transversely polarized virtual photon cross sections
- Agreement of H1 and ZEUS measurements
- ullet Direct gluon density extraction from $F_{_{\rm L}}$
- Theoretical predictions are in good agreement with the measurements

Backup

The F_L Structure Function in QPM

γ*p interaction at small x

$$F_2 \sim \sigma_L^{\gamma p} + \sigma_T^{\gamma p}$$
, $F_L \sim \sigma_L^{\gamma p}$

$$\rightarrow$$
 0 \leq F_L \leq F₂

Interaction of a longitudinally polarized photon with a spin 1/2 quark

In QPM: can't conserve angular momentum and helicity at the same time

$$F_L = F_2 - 2xF_1 = 0$$
 (Callan-Gross relation)

F_L Structure Function Extraction: Accurate Treatment

- Use cross section measurements at $E_p = 460$, 575 and 920 GeV (ZEUS: use 820 GeV data also)
- Simultaneously obtain F_2 and F_L in the fit properly taking correlated systematic uncertainties into account

H1
$$\chi^{2}(F_{L,i}, F_{2,i}, b_{j}) = \sum_{i} \frac{\left[(F_{2,i} - f(y_{i})F_{L,i}) - \sum_{j} \Gamma_{i,j}b_{j} - \mu_{i} \right]^{2}}{\Delta_{i}^{2}} + \sum_{j} b_{j}^{2}$$
$$f(y) = y^{2}/(1 + (1 - y)^{2})$$
$$\Delta_{i} = \sqrt{\left(\Delta_{i,\text{stat}}^{2} + \Delta_{i,\text{syst}}^{2}\right)}$$

ZEUS make use of Bayesian formalism (unconstrained case is equivalent to maximum likelihood)