

Th INTERNATIONAL CONFERENCE ON HIGH ENERGY PHYSICS

2-9-JULY - 2014 - V ALENCIA

Jet production and QCD measurements

at HERA

Paweł Sopicki IFJ PAN

On behalf of the H1 and ZEUS Collaborations

Valencia 05.07.2014

HERA

The HERA e[±]p collider 1992-2007:

• $E_{e^{\pm}} = 27.6 \text{ GeV}$ • $E_{p} = 920 \text{ GeV}$ • $\sqrt{s} = 319 \text{ GeV}$ • Integrated luminosity: ~0.5 fb⁻¹ (per experiment)

Standard DIS variables

- **Q**² virtuality of the exchanged boson
- **x**_{Bj} in QPM fraction of proton momentum carried by struck quark
- $\mathbf{y} = \mathbf{Q}^2 / \mathbf{xs}$ inelasticity

Jet production at HERA

Jet production and determination of strong coupling constant

• H1 jet production at high Q^2 and determination of α_s

High Q² measurements with inclusive jets, dijet and trijet eventsarXiv:1406.4709Subm to EPJC

• ZEUS jet production and determination of α_s

High Q² measurements with trijet events

ZEUS-prel-14-008

QCD measurements

• H1 QCD Instantons searches at high Q² H1-prel-14-031

Jet production in NC DIS

The fraction of the proton momentum carried by the parton that enters the hard subprocess:

 $\xi = x_{Bj} (1 + M_{jjj}^2/Q^2)$

Breit frame only hard QCD process can generate significant Direct sensitivity to α_s and gluon PDF

H1 High Q² Jet Production Analysis

Unfolding

- Regularized unfolding with TUnfold*
- Multidimensional unfolding in Q², y, P_T
- Migrations of up to 7 observables and correlations between samples taken into account

H1 high Q² Jets Results

H1 Data

- $150 < Q^2 < 200 \text{ GeV}^2$ (i = 16) \Box $400 < Q^2 < 700 \text{ GeV}^2$ (i = 1)
- $200 < Q^2 < 270 \text{ GeV}^2$ (i=11) ▲ $700 < Q^2 < 5000 \text{ GeV}^2$ (i=0)
- $270 < Q^2 < 400 \text{ GeV}^2$ (i=6) \triangle 5000 $< Q^2 < 15000 \text{ GeV}^2$ (i=0)

NLO \otimes c^{had} \otimes c^{ew} NLOJet++ with fastNLO MSTW2008, α_s = 0.118

NLO QCD predictions, corrected for hadronisation and electroweak effects, in good agreement with data within uncertainties

The determination and running of α_{s}

ZEUS trijet measurements

Phase space:

125 < Q² < 20000 GeV² 0.2 < y < 0.6

- At least three jets with $E_{T,B}^{jet} > 8 \text{ GeV and } -1 < \eta_{LAB}^{jet} < 2.5$
- $M_{ii} > 20 \text{ GeV}$

• pPDF: HERAPDF1.5 • $\mu_R^2 = Q^2 + \langle E_t^{jet} \rangle^2$ • $\mu_f^2 = Q^2$

Prediction: NLOJet++

ZEUS trijet measurements

Double differential cross sections

Good agreement between data and NLO calculations

QCD Instantons

Instantons

- Solutions to Yang-Mills equations of motion
- Physical interpretations: pseudo particle or tunneling process between topologicaly different vacuum states

QCD Instantons at HERA

- Produced in quark-gluon fusion*
- Analysis phase space:

150 < Q² < 15000 GeV² 0.2 < y < 0.7

• QCDINS Monte Carlo: access to full event topology

Selected Signatures

- One hard jet
- \bullet Densely populated eta band, flat in ϕ
- Large particles multiplicities

Variables of *I*-subprocess: $Q'^{2} \equiv -q'^{2} = -(\gamma - q'')^{2}$ $x' \equiv Q'^{2} / (2 g \cdot q')$ $W_{I}^{2} \equiv (q' + g)^{2} = Q'^{2} (1 - x')/x'$

- *S. Moch, A. Ringwald, F. Schrempp, Nucl Phys. B 507 (1997) 134 [hep-ph/9609445],
- A. Ringwald, F. Schrempp, Phys. Lett. B 438 (1998) 217 [hep-ph/9806528],
- A. Ringwald, F. Schrempp, Phys. Lett. B 459 (1999) 249 [hep-ph/9903039].

QCD Instantons - strategy

Strategy I

- Find jets in hadronic center of mass frame
 - Remove hardest jet from objects of hadronic final state (HFS)
- Boost to instanton rest frame and define variables
 - Topological: sphericity, Fox-Wolfram moments, azimuthal isotropy (Δ_{R}) , ...
 - Number of charged particles n_R
 - Transverse energy of the band...

• Variables are used as input to MVA

QCD Instantons - strategy

Multivariate Analysis

- Probability density estimator with range search (PDERS)
- Training with Rapgap/Djangoh MC as background and QCDINS as signal MC
- Good discriminator description in the background region

• Signal region: D > 0.86

QCD Instantons - results

Data are *consistent with background* **No evidence** for QCD Instantons

Limit calculations

- CL_s method used
- Input for limit calculations: QCD Instanton cross section Uncertainties: systematic and model
- Full range of the PDERS discriminator for better method reliability

Theoretical prediction in the analysis phase space:

10±2 pb

Upper limit for the instanton cross seciotn at 95%CL: 1.6 pb

Exclusion of the Ringwald-Schrempp's predictions for the QCD Instantons at HERA¹³

Summary

New interesting QCD results from the HERA experiments

Jet production in *ep* collisions at HERA and determination of α_{s}

- ZEUS and H1 measurements consistent with NLO calculations
- Most precise $\alpha_s(M_Z)$ is extracted from fit to the normalised multijet cross section, yielding $\alpha_s(M_Z)|_{k_T} = 0.1165 \ (8)_{exp} \ (38)_{pdf,theo}$
- The running of $\alpha_s(\mu_r)$ consistent with the RGE and with results from other jet data
- Precision of the measurement (H1)is better than that of NLO calculations Need NNLO

QCD Instantons searches

• Ringwald-Schrempp's predictions for the QCD Instantons at HERA appears to be excluded

Thank you for your attention

Backup slides

Observables not used in the TMVA training Full range of the discriminator

30

E_{T.B}

H₁₀

H1 Preliminary

Observables not used in the TMVA training Signal range of the discriminator

No excess of events in the signal region

Azimuthal isotropy

$$\Delta_b = (E'_{in,B} - E'_{out,B}) / E'_{in,B}$$

$$E_{out} = \min_{in} \sum_{n \ Hadr.} | \vec{p_n} \cdot \vec{i} |$$

$$E_{in} = \max_{n} \sum_{n \ Hadr.} | \vec{p_n} \cdot \vec{i} |$$

Test statistic distribution

Lets construct test statistics for **Data**, **Background and Backgr+Signal**

