

7 th INTERNATIONAL CONFERENCE ON HIGH ENERGY PHYSICS

2-9-JULY - 2014 - VALENCIA

Hadronic final states at HERA

Peter Bussey University of Glasgow

for the H1 and ZEUS Collaborations

Contents

H1: Measurement of charged particle spectra in deep-inelastic *ep* scattering at HERA.

Eur. Phys. J C73 (2013) 2406

- H1: Measurement of Feynman-x spectra of photons and neutrons in the very forward direction in deep-inelastic scattering at HERA. ArXiv 1404.0201
- **ZEUS**: Photoproduction of isolated photons, inclusively and with a jet, at HERA. Phys. Lett. B730 (2014) 293
- **ZEUS**: Further studies of the photoproduction of isolated photons with a jet at HERA. ArXiv 1405.7127

Charged particle spectra in DIS

Q² = 4-momentum transfer to virtual photon.

y = fractional energy loss of lepton in proton rest frame.

$$x = Q^2 / sy$$

Charged particle spectra in DIS

As Q² and x decrease, evolution should change from DGLAP to BFKL. CCFM is a combination.

Ordering of partons in p_{τ} is different in the different models.

Models tested (all LO QCD matrix elements.)

RAPGAP: DGLAP

DJANGOH: uses colour dipole model (ARIADNE), BFKL-like CASCADE: CCFM

HERWIG: with POWHEG option, HO corrections, different ordering.

H1 experimental observables

Variables defined in hadronic CM frame, using Q² and y.

+z* axis in direction of virtual photon.

Measure charged particle densities in η^* and p_{τ}^* in this frame integrated over $5 < Q^2 < 100 \text{ GeV}^{2}$.

Results

Most of the models fail over p_{τ}^* range: DJANGOH is best.

Charged particle spectra in DIS

6

Bins in Q² and x, for <u>low</u> and <u>high</u> p_{τ}^*

 $p_{T}^{*} < 1$ GeV: apart from CASCADE, distributions in η^{*} are OK. $p_{T}^{*} > 1$ GeV: DJANGOH OK, others poor especially at low Q² and x.

Conclusions

- Charged hadrons measured by H1 in DIS, for Q² range 5 – 100 GeV². 89 pb⁻¹ HERA data taken in 2006.
- Shapes of distributions compared to various MC models.
- DJANGOH best, RAPGAP also satisfactory at low p_{τ} but not at high p_{τ} .
- CASCADE (based on CCFM) is the least successful model.

Forward measurements in H1

Models tested

ep based: (Lund string) LEPTO, RAPGAP + ARIADNE (colour dipole, CDM)

Cosmic ray based, adapted for ep: SIBYLL, QGSJET: reggeon-based, interfaced using PHOJET. EPOS LHC: parton constitutents, modified treatment of central diffraction based on LHC measurements.

Experimental method

Variables defined in lab frame.

 $W = \sqrt{(ys - Q^2)}$

Photons, neutrons with $\eta > 7.9$ measured in forward neutron detector.

Normalised W distributions for photons and neutrons

Photons: cosmic ray models all similar, all too high. Neutrons: very variable. EPOS LHC best. Relative rate of photons/neutrons /DIS is independent of W.

11

Results in x_{F} for photons

CDM and SIBYLL fail.

Results in x_{F} for neutrons

Again similar in different W ranges, confirming x_F scaling.

RAPGAP (diffractive) and CDM (central): a combination works well.

EPOS LHC OK, other cosmic ray models fail.

Conclusions

- Very forward photons and neutrons measured by H1 for Q² range 6 – 100 GeV², 0.05 < y < 0.6. 131 pb⁻¹ HERA data in 2006-7.
- Relative rate of photons/neutrons / DIS independent of W, consistent with limiting fragmentation hypothesis.
- Feynman-x scaling confirmed in measured range.
- MC models overestimate the photon rate, but are mostly reasonable.
- Neutron distributions described well by RAPGAP+CDM or by EPOS LHC.

Prompt photons in photoproduction.

- "Prompt" photons emerge directly from the hard scattering process and give a particular view of this.
- Tests of specific QCD models.
- As potential background to "new physics", should be well understood.

15

1.4

 $\langle \delta \mathbf{Z} \rangle$

1.2

Hard photons in finely segmented central ZEUS calorimeter

Width of shower is evaluated.y = 1400 $y = 2EUS 374 pb^{-1}$ Fit to narrow photon peak1000p = 2VTHIA Signal+ broader mesonic background:20000

0

0.2

0.4

0.6

0.8

Models tested

Fontannaz, Guillet and Heinrich (FGH, EPHOX):

NLO + box diagram and a contribution from fragmentation. Lipatov, Malyshev, Zotov (LMZ): k_{T} -factorisation with unintegrated parton distributions and initial-state parton cascade. Upgraded for second ZEUS analysis.

Experimental quantities:

Photons: $E_{\tau} > 6 \text{ GeV}$ central: $-0.7 < \eta^{\gamma} < 0.9$ Isolated: to reduce fragmentation component and backgrounds, $E > 0.9^*$ energy of jet-like object containing photon.

Jets: use k_{τ} clustering algorithm. $E_{\tau} > 4$ GeV

Make use of
$$x_{\gamma}^{\text{meas}} = \Sigma_{\text{photon+jet}}(E - p_z) / \Sigma_{\text{all final-state hadrons}}(E - p_z)$$

Results

Inclusive isolated photon cross sections

Both **FGH** and **LMZ** give a satisfactory description. But large theory uncertainties.

Photon plus jet.

Prompt photons in photoproduction

ZEUS

The x^{meas} distribution shows a peak near unity corresponding to the direct process.

To investigate resolved-enhanced and direct-enhanced regions further, apply selections $x_{y}^{meas} < 0.8$ and $x_{y}^{meas} > 0.8$

Prompt photons in photoproduction

X^{meas} < 0.8 (upper)

x, meas >0.8

(lower)

All distributions good for both models, except $\eta(\text{jet})$ for LMZ, $x_{\gamma}^{\text{meas}} < 0.8$. Perhaps due to mismodelling of initial-state cascade.

Prompt photons in photoproduction

FGH is again fine, LMZ poorer on pseudorapidity difference.

PYTHIA and HERWIG also do well in the azimuth difference.

Conclusions:

- Prompt photon photoproduction measured in many variables by ZEUS.
- The FGH (EPHOX) program gives the better account of the physics, but LMZ is satisfactory for most variables.

Backup

ZEUS calorimeter

Hard scattered photons measured in the BCAL (finely segmented in the Z direction).

Summary:

 Measurements of prompt photons with jets in photoproduction have been made by ZEUS using the full

HERA II data sample.

- Results are well described by
- NLO theories next.