Recent results on charmonium production at HERA

Nelly Gogitidze

LPI, Moscow & DESY, Hamburg

on behalf of

Diffraction 2014

10-16 September 2014, Primošten Croatia

Recent results from H1 and ZEUS

Elastic and Proton-Dissociative Photoproduction of J/ψ Mesons at HERA. Eur. Phys. J C73 (2013) 2466, [arXiv:1304.5162]

Measurement of the cross section ratio $\sigma(\psi(2S))/\sigma(J/\psi(1S))$ in deep inelastic exclusive *ep* scattering at HERA. ZEUS-prel-14-003

H1 and ZEUS experiments at HERA

	$E_p(GeV)$	$\sqrt{s}(GeV)$	
high energy	820 / 920	300/318	
medium energy	575	250	
low energy	460	225	

DIFF 2014, Primošten, Croatia

Nelly Gogitidze

Diffractive Vector Meson production at HERA

 $|t| < 1 \text{ GeV}^2$

p(P')

dominates at high |t|

Q^2	proton virtuality	$Q^2 = -q^2 = -(k - k')^2$
W	CMS energy of the γp system	$W^2 = (q + P)^2$
t	4-mom. transfer squared at proton vtx.	$t = (P - P')^2$
X	parton momentum fraction (Bjorken x)	$x~pprox { m Q}^2/{ m W}^2$

HERA makes it possible, within a single experiment, to study diffractive vector meson production over a large W_{γ} interval with a wide range of several scales:

$$Q^2$$
 , t , $M_{_{V\!M}}$

p(P)

Expectations for diffractive Vector Meson production

Regge Approach

Soft Pomeron exchange

$$\alpha_{P}(t) = \alpha_{0} + \alpha' t$$

$$\alpha_{0} = 1.08, \alpha' = 0.25 \, GeV^{-2} \quad \text{(DL)}$$

$$\frac{d \sigma}{dt} \propto e^{bt} \left(\frac{W_{\gamma P}}{W_{0}}\right)^{\delta} \qquad \delta = 4(\alpha_{0} - 1)$$

$$b = b_{0} + 4\alpha' \ln\left(\frac{W_{\gamma P}}{W_{0}}\right)$$

For light VM at $Q^2 \approx 0, t \approx 0$ expect Slow rise of $\sigma \propto W_{\gamma p}^{0.22...0.32}$ Shrinkage $b = b(W_{\gamma p})$ Exchange of ≥ 2 gluons

- 1. Photon fluctuates into $q\overline{q}$ dipole
- 2. Dipole proton interaction through a gluon ladder
- 3. $q\overline{q}$ recombines into VM

$$\sigma \propto [xg(x,Q^2)]^2$$

Expected to work if hard scale present Steep rise with increasing $W_{\gamma p}$ due to gluon density increase at low x No shrinkage

DIFF 2014, Primošten, Croatia

Energy dependence in Photoproduction

 $\sigma(\gamma p \to V p) vs W_{\gamma p}$

• Low mass VM (ρ , ω , ϕ , $M_V^2 \simeq 1 \, GeV^2$): no perturbative scale ==> weak energy dependence

soft regime

• High mass VM $(J/\psi, \psi', Y)$: perturbative scale ==> strong energy dependence

hard regime

VM production at HERA: transition between soft and hard regimes

Elastic and Proton-Dissociative Photoproductionof J/ψMesons at HERA[arXiv:1304.5162]

Motivation and experimental technique

• Extend energy range to lower $W_{\gamma p}$

Use data from HERA low energy run, $E_p = 460 \, GeV$

• Use H1 Fast Track Trigger (FTT)

* purely based on track information

- * trigger both decay channels: $J/\psi \rightarrow \mu^+\mu^-$, $J/\psi \rightarrow e^+e^-$ * measure elastic and p-diss. processes with the same trigger
- Use forward detectors FTS, Plug, LAr to tag p-diss. process

use Regularised Unfolding technique to disentangle elastic and p-diss. processes

Analysis data samples

Data Set	t E_p	Process	M_{Y}	$< Q^{2} >$	t	$W_{\gamma p}$	L
HE	920 GeV	elastic p–diss	m_p $m_p - 10 GeV$	$0.1 GeV^2$	$< 8 GeV^2$	40–110 <i>GeV</i>	$130 pb^{-1}$
LE	460 GeV	elastic p–diss	m_p $m_p - 10 GeV$	0.1 <i>GeV</i> ²	$< 8 GeV^2$	25–80 <i>GeV</i>	$11 pb^{-1}$

DIFF 2014, Primošten, Croatia

Nelly Gogitidze

Combined $J/\psi \rightarrow e^+e^-$, $\mu^+\mu^-$ cross sections

Elastic and p-diss. Cross Sections measured simultaneously using Regularised Unfolding

- Combination of decay channels separately for elastic and p-diss. processes by χ^2 minimisation with
 - full statistical error matrix
 - correlated systematic errors
 - applying common uncertainties after the combination

Elastic and P-diss. cross sections vs. |t|

Parameterisation:

- Elastic $d\sigma/dt = N_{el} e^{-b_{el}|t|}$
 - P-diss. $d\sigma/dt = N_{pd} (1 + (b_{pd}/n) |t|)^{-n}$
- Simultaneous fit of elastic and p-diss. cross sections

HE: fit includes previous high |t| data H1(03) [PL B568(2003) 205]

$$b_{el} = 4.88 \pm 0.15 \, GeV^2$$

$$HE \quad b_{pd} = 1.79 \pm 0.12 \, GeV^2$$

$$n = 3.58 \pm 0.15$$

$$b_{el} = 4.2 \pm 0.2 \, GeV^2$$

$$b_{el} = 4.5 \pm 0.2 \text{ GeV}$$

 $b_{pd} = 1.6 \pm 0.2 \text{ GeV}^2$
 $n = 3.58 \text{(fixed)}$

DIFF 2014, Primošten, Croatia

LE

Nelly Gogitidze

P-diss. cross section vs. t

- Comparison with the previous high |t| measurement [H1(03)]
- High |t| data extrapolated to match $W_{\gamma p}$, Q² and My range of present data
- The new p-diss. measurement extends the reach to small values of |t|.
- Good agreement in the overlap region

Elastic and P-diss. cross sections vs. $W_{\gamma p}$

- Simultaneous fit, taking into account correlations between elastic and p-diss. cross sections
- Fit function parameterised as: $\sigma = N(W_{\gamma p}/W_0)^{\delta}$ with $W_0 = 90 \, GeV \quad \delta(t) = 4(\alpha(t) - 1)$

• Results: $\delta_{el} = 0.67 \pm 0.03$ $\delta_{pd} = 0.42 \pm 0.05$

• These values are in agreement with previous H1 measurements

Comparison to other HERA measurements

- Large overlap with previous H1 and ZEUS [hep-ex/0201043] measurements
- Similar precision in range $30 \, GeV < W_{\gamma p} < 110 \, GeV$

Good agreement of HERA experiments

HERA data in comparison with fixed target and LHCb data

- New measurements in the transition region from fixed target to HERA data
- Fixed target data: steeper slope, lower normalisation ?
- H1 power-law fit , extrapolated to higher $W_{\gamma p}$, describes LHCb data well

HERA data in comparison with fixed target and LHCb data

• Fixed target and LHCb data

- New measurements in the transition region from fixed target to HERA data
- Fixed target data: steeper slope, lower normalisation ?
- An extrapolation of power-law obtained by H1, describes LHCb data marginally

Comparison to QCD calculations

- LO and NLO fits to previous
 J/ψ measurements at HERA
 (A.Martin et al. [arXiv:0709.4406])
- Note: NLO gluon density determined from fits to J/ψ data of H1 (2005) and ZEUS (2002) (thus, agreement with HERA data is expected)
- Both fits extrapolated to higher $W_{\gamma p}$
- LO fit describes LHCb data
- High precision J/ψ data give important input to gluon at small x

Measurement of theCross Section Ratio $\sigma(\psi(2S))/\sigma(J/\psi(1S))$ in Deep Inelastic exclusive ep scattering at HERA(ZEUS-prel-14-003)

Measurement of $\sigma_{\psi(2S)} / \sigma_{J/\psi(1S)}$ ratio in DIS

$$R = \frac{\sigma_{\gamma p} \to \psi(2S)_p}{\sigma_{\gamma p} \to J/\psi(1S)_p}$$

- Tests the dynamics of the hard process
- Sensitive to radial charmonium wave function

 $\psi(2S)$ wave function is different from $J/\psi(1S)$ wave function:

• has node at ~ 0.35 fm • $< r^2(\psi(2S)) > \approx 2 < r^2(J/\psi(1S)) >$

PQCD model prediction: [J.Nemchik et al., 1994, 1998] * $R \approx 0.17$ (photoproduction) * R rises with Q² (DIS)

Data samples: 2-prong and 4-prong events

HERA II data (2003-2007): $Int.Lumi = 354 \ pb^{-1}$

2-prong signal: $J/\psi(1S) \rightarrow \mu^+ \mu^-, \ \psi(2S) \rightarrow \mu^+ \mu^-$

- Straight line background fit using the sidebands $2 < M_{\mu\mu} < 2.62 \, GeV$ and $4.05 < M_{\mu\mu} < 5 \, GeV$
- J/ ψ and ψ' mass windows for the ratio $3.02 < M < 3.17 \, GeV$ and $3.59 < M^{\mu\mu}_{\mu\mu} < 3.79 \, GeV$ Window widths different due to changing mass resolution
- All events above background in these windows used for the ratio $\sigma_{\psi(2S)}/\sigma_{J/\psi}$
- MC study: this choice minimizes systematic uncertainty

4-prong signal: $\psi(2S) \rightarrow J/\psi(1S)\pi^+\pi^-$

Ratio $\sigma_{\psi(2S)} / \sigma_{J/\psi(1S)}$: measurement results

Int. Lumi=354 pb^{-1} $30 \le W \le 210 \, GeV$ $5 \le Q^2 \le 70 \, GeV^2$ $|t| \le 1 \, GeV^2$

Combined Modes ZEUS

- Increases with Q²
- Independent of W and t

Ratio $\sigma_{\psi(2S)} / \sigma_{J/\psi(1S)}$: H1 - ZEUS comparison

ZEUS data: Q² bins 5–12, 12–80 GeV² (as used by H1 [Eur. Phys. J. C10 (1999) 373])

Comparison to theory

 Predictions of Nemchik et al. agree well with the new ZEUS HERA II results. J. Exp.Theor. Phys.86 (1998) 21, [arXiv:hep-ph/9712469v1]

Conclusions

- Elastic and proton dissociative diffractive J/ψ photoproduction differential cross section as function of |t| and W_{γp} Kinematic range: |t|<8 GeV², 25<W_{γp}<110 GeV
 J/ψ→μ⁺μ⁻, e⁺e⁻ decay channels combined and interpreted using fits.
- Elastic and p-diss. cross sections extracted simultaneously using unfolding.
- For the first time at HERA:

p-diss. diffractive J/ψ production measured precisely at small |t|.

- HERA proton low energy run: adds information at lower $W_{\gamma p}$ values.
- Good agreement with previous HERA measurements.
- QCD inspired model is able to describe HERA and LHC data.
- Fixed target data differ in slope and possibly in normalisation.

- New measurement of cross section ratio $\sigma(\psi(2S))/\sigma(J/\psi(1S))$ in exclusive DIS using the high statistics HERA II data Kinematic range: $5 \le Q^2 \le 70 \text{ GeV}^2$, $|t| \le 1 \text{ GeV}^2$, $30 \le W \le 210 \text{ GeV}$
- Precision significantly improved compared to previous H1 result (HERA I).
- Ratio increases with Q² and is independent of W and |t|.
- Good agreement with previous H1 HERA I results and with theory.

Comparison to new QCD Calculations

S.P. Jones, A.D. Martin, M.G. Ryskin and T. Teubner [arXiv:1307.7099v1]

Figure 3: LO (left panel) and NLO (right panel) fits to exclusive J/ψ data. Photoproduction data from H1 [7, 4] and ZEUS [21, 22] are displayed along with the LHCb [5] W_+ and W_- solutions as described in the text. The darker shaded areas indicate the region of the available data. Included in the fit but not displayed are the H1 [7] and ZEUS [22] electroproduction data. The widths of the bands indicate the uncertainties of the fitted cross section resulting from the 1σ experimental error.

Regularised Unfolding of the Cross Sections

(F. Huber)

- Use regularised unfolding for disentangling of elastic and proton dissociative process and for taking correctly into account the migrations.
- Unfolding is done to true variables.

$$y = A_R \cdot x$$

A_R Response matrix

X

true number of events

y reconstructed number of events

L regularisation matrix

Invariant Mass Distributions

 $J/\psi \to \mu^+ \mu^-$

- Student's t-function for signal description
- exponential distribution for non-resonant background

$$J/\psi \rightarrow e^+ e^-$$

- mee low mass tail: * QED radiation losses
 - * Bremsstrahlung from *e*
- Non-resonant background subtracted by simulation (GRAPE), counting of events in signal region

Elastic and P-diss. Cross Sections vs. $W_{\gamma p}$

• These values are in agreement with previous H1 measurements

Ratio σ_{pd}/σ_{el} vs. $W_{\gamma p}$

Fit function:
$$N_R (W_{\gamma p}/W_0)^{\delta_R}$$

with $W_0 = 90 \, GeV$
 $N_R = N_{pd}/N_{el} = 0.81 \pm 0.10$
 $\delta_R = \delta_{pd} - \delta_{el} = -0.25 \pm 0.06$

Ratio σ_{pd}/σ_{el} only slowly decreasing with increasing $W_{\mathcal{P}}$

Control Distributions: $J/\psi(1S) \rightarrow \mu^+ \mu^-, \psi(2S) \rightarrow \mu^+ \mu^-$

- GRAPE for background
- MC reweighted in Q², |t| and decay angles, and normalised to data
- Good description of data by MC

Control Distributions for $\psi(2S) \rightarrow J/\psi \pi^+ \pi^-$

- MC reweighted in Q² and |t|, and normalised to data
- Good description of data by MC