
Diffractive Dijet Production with Leading Proton in ep Collisions at HERA

Radek Žlebčík on behalf of H1 collaboration

DIS 2014 29th April 2014

Diffractive Kinematics

HERA: ~10% of low-x DIS events diffractive

 Q^2 Virtuality of the photon $Q^2 \approx 0 \rightarrow$ photoproduction $Q^2 \gg 0 \rightarrow$ deep inelastic scattering (DIS)

Inelasticity $y = \frac{p \cdot q}{p \cdot k}$

The fraction of exchanged momentum entering to the hard subprocess

$$\beta = \frac{x}{x_{IP}} \approx \frac{Q^2}{Q^2 + M_X^2}$$

 \mathbf{p}'

Momentum fraction of the diffractive exchange

$$x_{\mathit{IP}} = \frac{q \cdot (p - p')}{q \cdot p} \approx 1 - \frac{E_p'}{E_p}$$

 $M_Y = m_p$ proton stays intact, needs detector setup to detect protons (used in this analysis)

4-momentum $t = (p-p')^2$

p

 $M_Y > m_p$ proton dissociates, approx. 20 % in H1 LRG measurement

Factorization in Diffraction

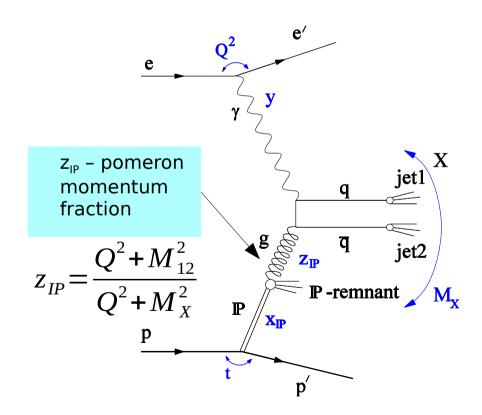
QCD factorization holds for inclusive and exclusive processes if:

- photon is point-like (Q² is high enough)
- higher twist corrections are negligible (problems around $\beta = 1$) QCD factorization theoretically proven for DIS (Collins 1998)

$$d\sigma^{D}(\gamma p \rightarrow Xp) = \sum_{parton_{i}} f_{i}^{D}(\beta, Q^{2}, x_{IP}, t) * d\hat{\sigma}^{\gamma i}(x, Q^{2})$$

$$f_i^D$$
 DPDFs, obeys DGLAP evolution, process independent

$$d\,\hat{\sigma}^{\gamma\,i}$$
 Process dependent partonic x-section, calculable within P-QCD

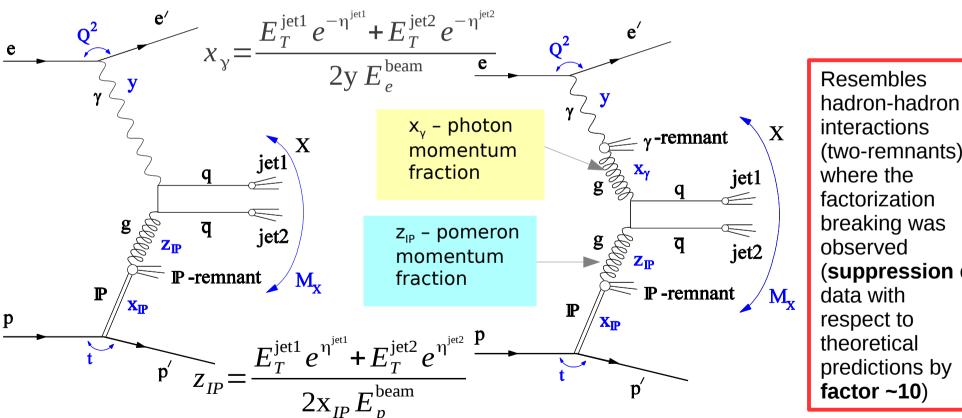

Assuming validity of DGLAP evolution and Regge vertex factorization the DPDFs are obtained by fitting of the inclusive (+ dijets) DIS data

Regge vertex factorization for DPDF:

$$f_{i}^{D}(\beta, Q^{2}, x_{IP}, t) = f_{IP/p}(x_{IP}, t) \cdot f_{i}^{IP}(\beta, Q^{2})$$
pomeron flux factor

Diffractive Dijet Production - DIS

- Photon enters directly into the hard subprocess
- One remnant
- Factorization theoretically proven


Diffractive Dijet Production -Photoproduction

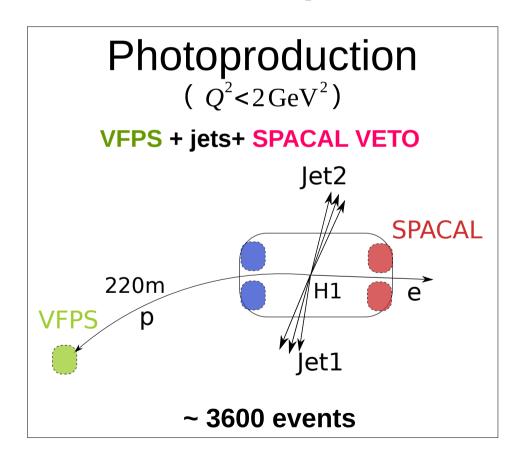
Direct

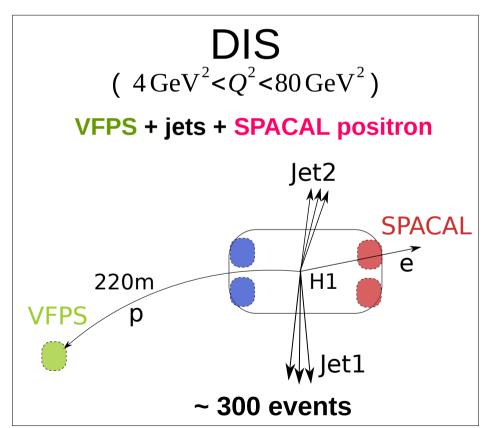
- No photon remnant
- $\chi_{\gamma} = 1$ (at parton-level) Dominant for high Q^2

Resolved

- Photon remnant
- $\chi_{\gamma} < 1$ Dominant for low Q^2 , y-PDF introduced

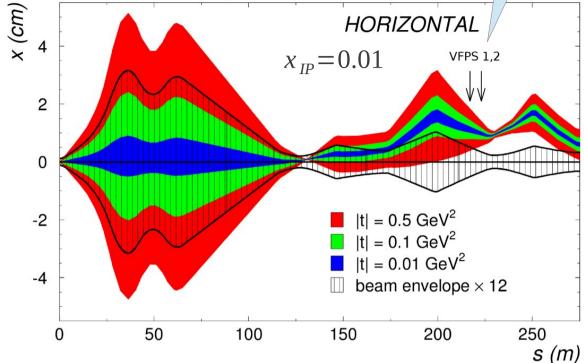
interactions (two-remnants) factorization breaking was (suppression of predictions by

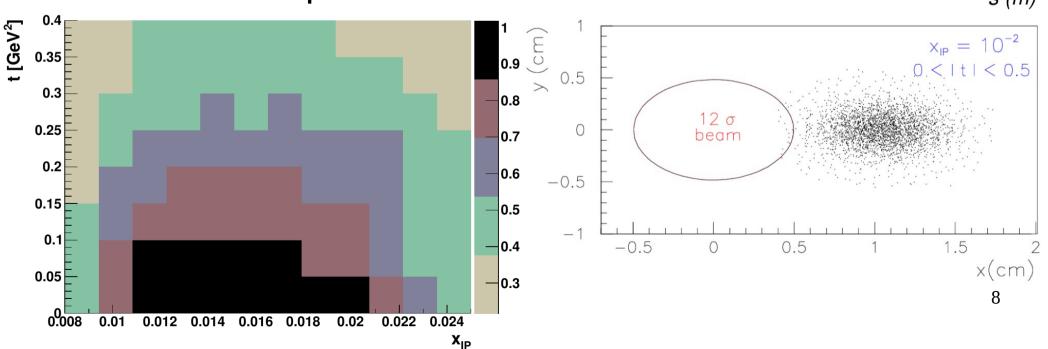

Motivation for the measurement


- Diffractive dijet photoproduction measured extensively by HERA, so far only by large rapidity gap method
- DIS 2013: First dijet photoproduction measurement with **leading proton** detection. Theoretical uncertainties too large to make definite conclusion about factorization breaking

- New measurement with leading proton in diffractive DIS.
 Similar kinematic region as in photoproduction
- The double ratios of data to NLO QCD prediction for photoproduction and DIS introduced to reduce experimental and theoretical errors

Measurement Setup

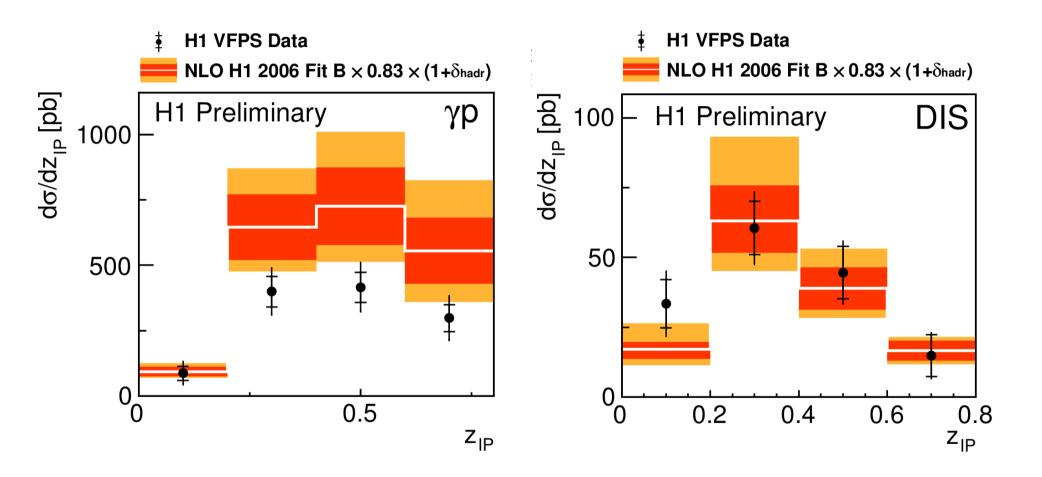

- Analysis based on 2006/07 e⁺p HERA data, integrated lumi ~30 pb⁻¹
- Leading proton measured by proton spectrometer VFPS $\rightarrow M_Y = M_P$
- Photoproduction and DIS phase spaces identical up to Q^2 range
- Jets defined by k_T -algorithm


H1 Very Forward Proton Spectrometer

- 2 stations 218 and 222 m away from the interaction point
- High track reconstruction efficiency (~96%) and low background (<1%)

VFPS

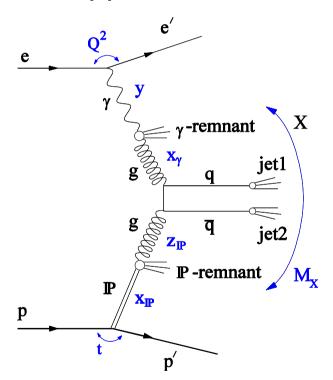
VFPS Acceptance

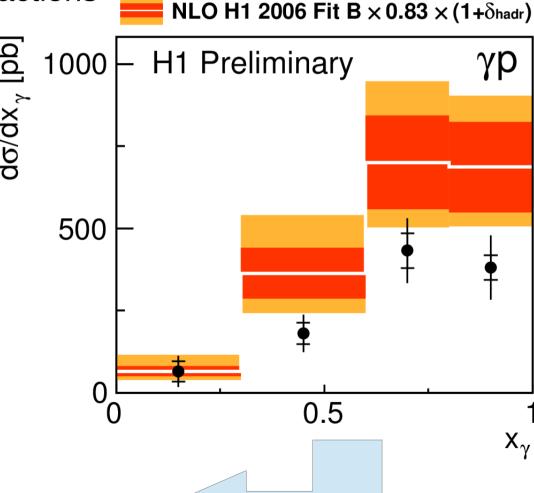

Theoretical Predictions

 NLO QCD predictions were compared with measured H1 VFPS data

Process	Photoproduction	DIS
Program for NLO	Frixione-Ridolfi NLO	NLOJET++
Proton DPDF	H1 2006 Fit B	H1 2006 Fit B
γ -PDF	GRV-HO	_
Hard scale	$(E_T^{* ext{jet}1})^2$	$(E_T^{*\mathrm{jet}1})^2$ + $Q^2/4$

 NLO QCD predictions are corrected for hadronization effects by means of hadronization corrections calculated by Monte Carlo model Rapgap (typically less than 10%)


Differential Cross Section in Z_{IP}

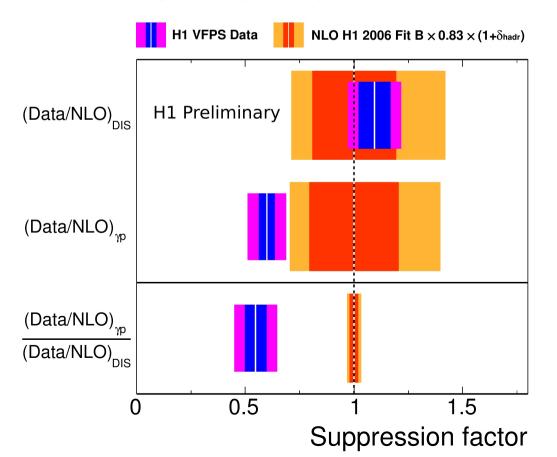


- In photoproduction data suppressed by factor ~0.6 in comparison to NLO
- In DIS data satisfactorily described by NLO

Differential Cross Section in X_{γ}

Q: Resolved photoproduction (x_y <1) resembles hadron-hadron interactions Higher suppression?

11

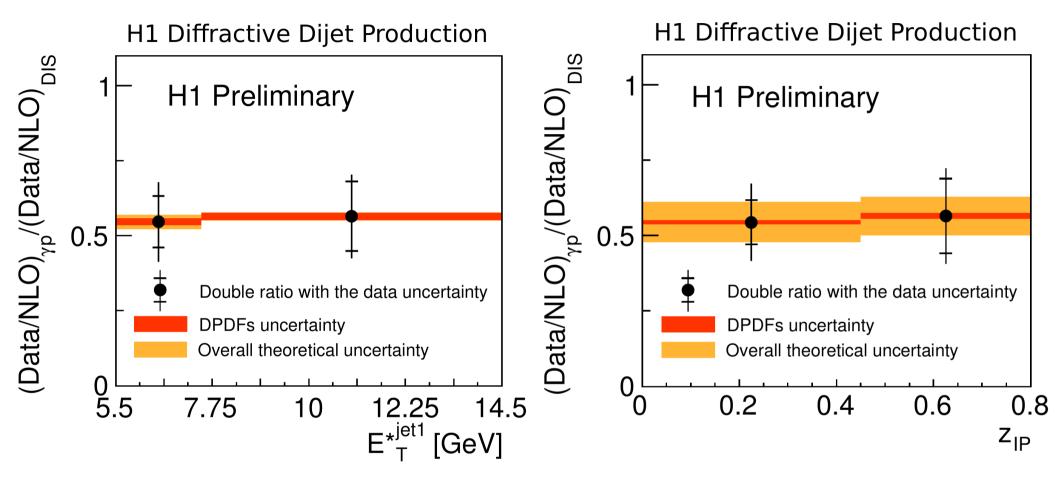

H1 VFPS Data

A: No hint for higher suppression for $x_y < 1$

Double Ratio

 Double ratio of data to NLO QCD predictions for photoproduction and DIS reduce data systematic and theoretical uncertainties

$$\frac{(\mathrm{DATA/NLO})_{\gamma p}}{(\mathrm{DATA/NLO})_{\mathrm{DIS}}} = 0.55 \pm 0.10 \,(\mathrm{data}) \pm 0.02 \,(\mathrm{theor.})$$


Theoretical uncertainties

DPDFs uncertainty

Overall theoretical uncertainty

For QCD scale uncertainty the scale varied simultaneously in in photoproduction and DIS by factor of ½ and 2

Differential Double Ratios

- Double ratios are within errors constant
- Dependence of the suppression on $E_{\scriptscriptstyle T}$ of the leading jet not observed

Summary

- Dijet diffractive cross sections measured in two Q^2 regions, photoproduction and DIS using **proton** spectrometer
- Previous H1 measurements based on large rapidity gap method confirmed
- Suppression factor in photoproduction about 0.55 established
- No hint of a dependence of the suppression on x_{γ} and E_{T} of the leading jet

Backup

Analysis cuts

- Photoproduction and DIS phase spaces differ only in Q^2 range
- Jets defined by k_T -algorithm
- Cut z_{IP} <0.8 used because H1 Fit B fitted only to 0.8

γp	DIS		
$Q^2 < 2\mathrm{GeV}^2$	$4{\rm GeV}^2 < Q^2 < 80{\rm GeV}^2$		
Common Cuts			
0.2 < y < 0.7			
$E_T^{*jet1} > 5.5 \text{GeV}$ $E_T^{*jet2} > 4.0 \text{GeV}$			
$-1 < \eta^{\text{jet}1,2} < 2.5$			
$0.010 < x_{I\!\!P} < 0.024$			
$ t < 0.6 \mathrm{GeV}^2$			
$z_{I\!\!P} < 0.8$			