Combination of D^{*} differential crosssection measurements in DIS at HERA.

Misha Lisovyi (DESY)

on behalf of the H1 & ZEUS collaborations

DIS2014, Warsaw

30/04/2014

DIS at HERA.

 $E_p = 920 \, GeV \qquad E_e = 27.5 \, GeV$ $\sqrt{s} = 318 \, GeV$

L~0.5 fb⁻¹ per experiment

M. Lisovyi | DIS 2014 | 30/04/2014 | Slide 2

Introduction to charm production @ HERA.

Direct probe of the gluon in the proton: predominantly via bosongluon fusion. $\sigma^{\mathsf{D}} = \mathsf{PDF} \otimes \mathsf{ME} \otimes \mathsf{FF}$

- Combine the most precise measurements of D^{*} visible differential cross sections in DIS by ZEUS and H1 in HERAII to get the ultimate precision. Combination was done using HERAverager.
- Minimal (negligible) theoretical uncertainties (due to extrapolation), in contrast to the recent H1+ZEUS combination of inclusive charm cross sections in the full phase space(EPJ C73 (2013) 2311).
- > Provide measurements in $p_T(D^*)$, $n(D^*)$, $z(D^*)=(E-p_z)^{D^*}/(2E_e y)$, Q^2 , y
- Combined visible D^{*} cross sections¹⁾ were compared to the NLO QCD predictions from HVQDIS

¹⁾ corrected to the QED Born level with running α ; include the beauty contribution

Combination inputs.

Data combination.

Data combination.

- Significant improvement in precision.
- > Precision of the combined data is ~5% in a large fraction of the phase space.

NLO O(α_s^2) QCD predictions.

H1prelim-13-171, ZEUS-prel-13-002

NLO QCD predictions: the same as in the ZEUS D^{\ast} paper : HVQDIS and RAPGAP b \times 1.6

HVQDIS setup

- $m_c = 1.5 \pm 0.15 \; GeV$
- $\mu_R = \mu_F = \sqrt{Q^2 + 4m_c^2}$, varied **independently** by factor 2
- $\alpha_s^{n_f=3}(M_Z) = 0.105 \pm 0.02$
- HERAPDF1.0
- Fragmentation:
 - Kartvelishvili fragmentation function parametrised as step function with α_k and bin boundaries variations
 - Transverse fragmentation: $f(k_T) = k_T exp(\frac{-2k_T}{\langle k_T \rangle})$, $k_T = 0.35 \pm 0.15 \ GeV$
 - $f(c \to D^*) = 0.2287 \pm 0.0056$

courtesy of S. Zenaiev

$\eta(D^*)$: NLO QCD vs. combined data.

H1prelim-13-171, ZEU5-prel-13-002

- Predictions describe the data very well.
- Theory uncertainties are much larger than data uncertainties.
- NNLO calculations and improved fragmentation models would be helpful!

M. Lisovyi | DIS 2014 | 30/04/2014 | Slide 9

$p_{-}(D^*)$: NLO QCD vs. combined data.

- > Predictions describe the data very well.
- > Theory uncertainties are mostly much larger than data uncertainties.
- NNLO calculations and improved fragmentation models would be helpful!

z(D*): NLO QCD vs. combined data.

- Predictions describe the data reasonably well.
- Theory uncertainties are much larger than data uncertainties.
- NNLO calculations and improved fragmentation models would be helpful!

Q²: NLO QCD vs. combined data.

H1prelim-13-171, ZEU5-prel-13-002

- Predictions describe the data very well.
- Theory uncertainties are mostly larger than data uncertainties.
- NNLO calculations and improved fragmentation models would be helpful!

DESY

y: NLO QCD vs. combined data.

Predictions describe the data very well.

- Theory uncertainties are much larger than data uncertainties.
- NNLO calculations and improved fragmentation models would be helpful!

H1 and ZEUS (June 2013) d₀/dy (nb) HERA (prel.) ٠ **NLO QCD** 20 5<Q²<1000 GeV² HERA Heavy Flavour Working Group 0.02<y<0.7 1.5<p_(D*)<20 GeV |n(D*)|<1.5 10 0 0.1 0.2 0.3 0.40.5 0.6 0.7

M. Lisovyi | DIS 2014 | 30/04/2014 | Slide 13

(Q²,y): NLO QCD vs. combined data.

H1prelim-13-171, ZEUS-prel-13-002

- Predictions describe the data very well.
- Theory uncertainties are mostly larger than data uncertainties.
- NNLO calculations and improved fragmentation models would be helpful!

M. Lisovyi | DIS 2014 | 30/04/2014 | Slide 14

HERA Heavy Flavour Working Group (June 2013)

DESY

- Most precise D* measurements in DIS by ZEUS and H1 were combined in the visible phase space.
- > Significant improvement of the data precision.
- Negligible component of the theoretical uncertainty (up to 10% of the total uncertainty) due to small extrapolation to the common phase space.
- > NLO QCD calculations describe the combined data well.
- Uncertainties of the predictions are typically much larger than those of the data => higher-order calculations and improved fragmentation model would be very helpful.

NLO QCD predictions.

- > Fixed-order $O(\alpha_s^2)$ calculations using HVQDIS.
- Set-up follows closely the one used in the combination of inclusive charm cross sections (EPJ C73 (2013) 2311) (see back-up). Only µ_R and µ_F are varied independently.
- Small beauty contribution is estimated with RAPGAP and normalised following original analyses.

