

Precision tests of QCD at HERA

Nataša Raičević

University of Montenegro

on behalf of the H1 and ZEUS Collaborations

Excited QCD 2013

3-9 February 2013, Bjelašnica Mountain, Sarajevo

HERA and luminosity

HERA (DESY, Hamburg): 1992 - 2007

> Total lumi H1, ZEUS: 0.5 fb⁻¹ each

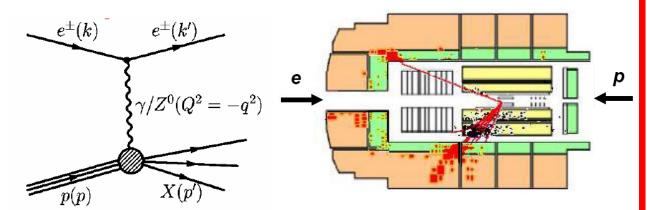
HERA-I 1992-2000 ~120 pb⁻¹

HERA-II 2003-2007 ~380 pb⁻¹

 $E_{e+/e-} = 27.6 \text{ GeV}$

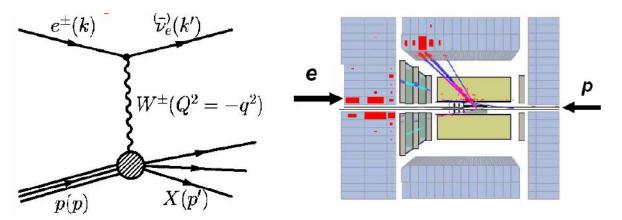
HERA-I (E_p = 820, 920 GeV) upgraded to HERA-II (E_p = 920 GeV)

Since April 2007 until the end of June


- Low energy run LER $(E_p = 460 \text{ GeV})$
- Medium energy run MER $(E_p = 575 \text{ GeV})$

Measurement of F_L

Inclusive Deep Inelastic Scattering (DIS)


Neutral Current (NC)

H1 NC event display

Charged Current (CC)

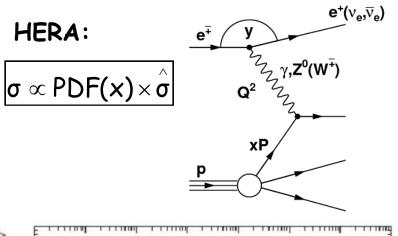
ZEUS CC event display

N. Raicevic

Excited QCD 2013

Virtuality of exchanged boson:

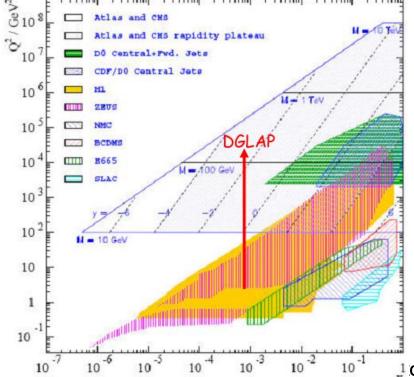
$$Q^2 = -q^2 = -(k - k')^2$$


Fraction of proton momentum carried by struck quark

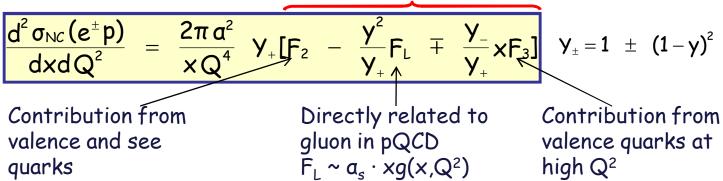
$$x = \frac{Q^2}{2p \cdot q}$$

Fraction of energy transferred from incoming lepton at proton rest frame

$$y = \frac{p \cdot q}{p \cdot k}$$


HERA Parton Denisty Functions (PDFs) and the LHC

$$\sigma \propto \mathsf{PDF}(\mathbf{x}_1) \times \mathsf{PDF}(\mathbf{x}_2) \times \hat{\sigma}$$



- □ Proton structure described by precise PDFs needed for making accurate predictions for any process involving protons.
- □ DGLAP QCD evolution provides
 Q² dependence of the PDFs, x
 dependence must come from data.
 HERA covers the most important
 region for the LHC.

Precision measurements of QCD at HERA

Neutral current cross section - new results from HERA

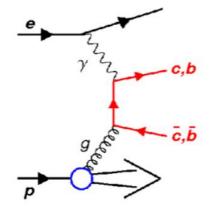
$$\tilde{\sigma}_{NC}(x,Q^2)$$
 - NC reduced cross-section

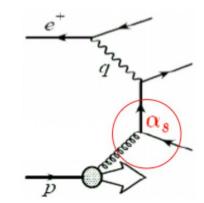
Charged current cross section - new results from HERA

$$\frac{d^2\sigma_{cc}^{e^{\pm}p}}{dxdQ^2} = \frac{G_F^2M_W^4}{2\pi x(Q^2 + M_W^2)^2}\sigma_{cc}^{\pm}$$

$$\sigma_{cc}^{e^+p} \sim (x\overline{u} + x\overline{c}) + (1-y)^2(xd + xs)$$
 Sensitivity to the flavor of the valence distributions at high x

- Direct measure of structure functions (various linear combination of PDFs)
- HERA can disentangle proton PDFs with little assumptions
 N. Raicevic Excited QCD 2013


Precision measurements of QCD at HERA

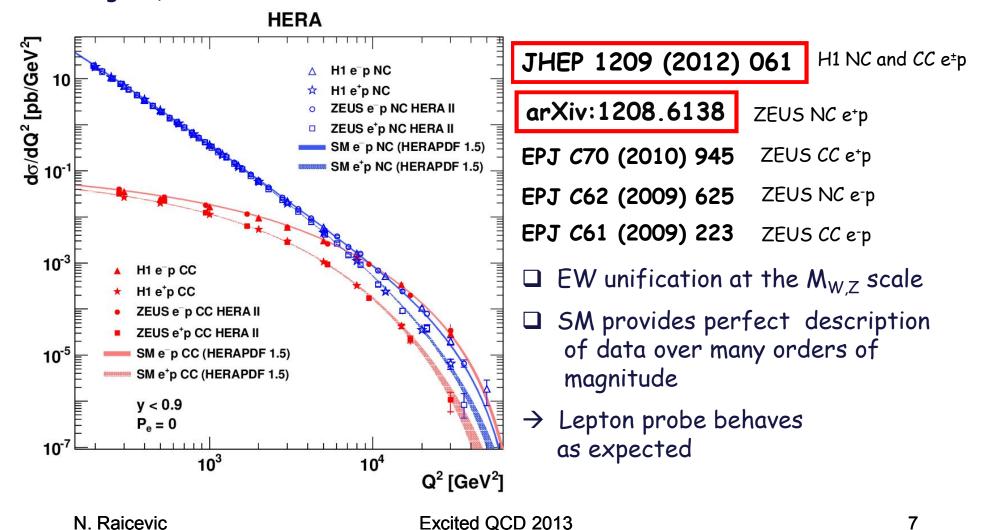

Charm contribution to the inclusive DIS - new result from HERA

> ~ 30% contribution to the inclusive DIS cross section (sizeable part)

$$\frac{d^{2} \sigma_{NC}(e^{\pm} p)}{dxdQ^{2}} = \frac{2\pi \alpha^{2}}{xQ^{4}} Y_{+}[F_{2}^{cc} - \frac{y^{2}}{Y_{+}}F_{L}^{cc}]$$

Measurement of the structure function F₂^{cc}, probing mass effects in the QCD evolution

Jet production in DIS - new measurements from HERA

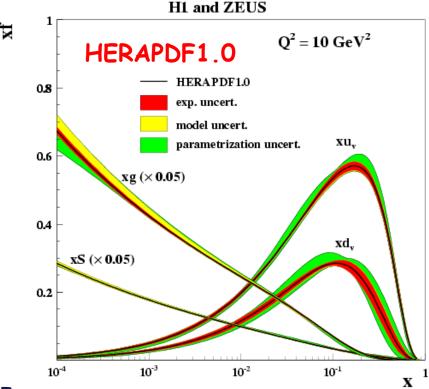

> Direct sensitivity to a_s and gluon density

<u>Diffraction</u> - new measurements from HERA

> New inputs for more precise DPDFs (not covered here): EPJ C72 (2012) 2175 and EPJ C72 (2012) 2074

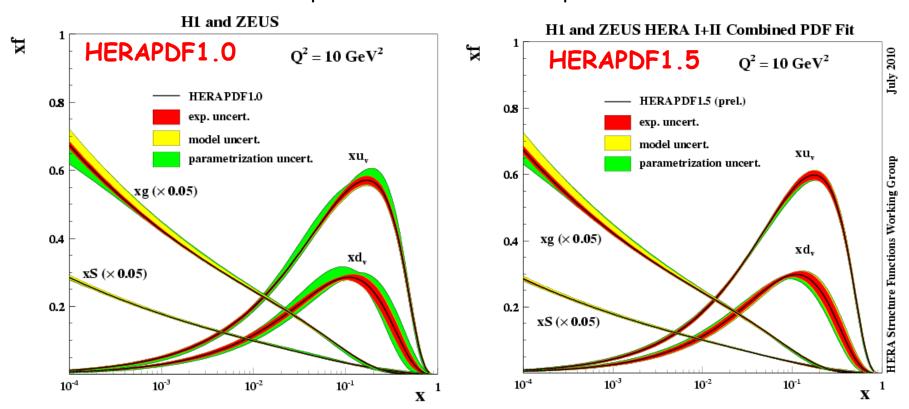
H1 and ZEUS HERA-II NC and CC cross sections at high Q2

□ Last pieces from H1 and ZEUS inclusive measurements (at nominal E_p = 920 GeV) - high Q^2 - FINALISED

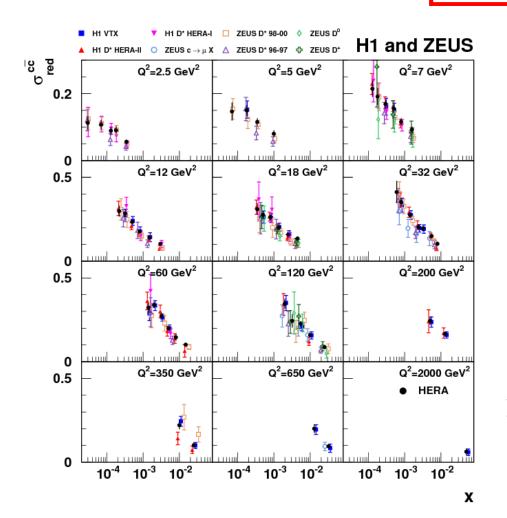


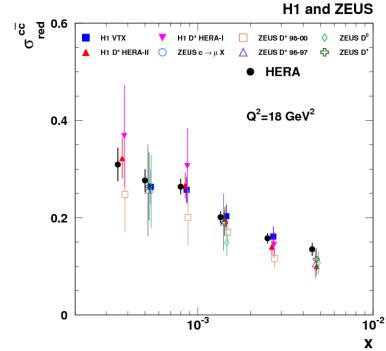
QCD analysis of HERA data

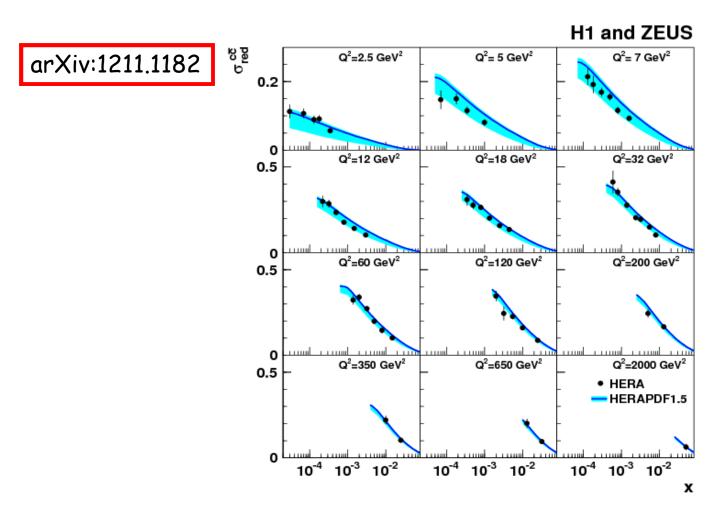
General approach for PDF determination


- ☐ At low starting scale Q_0^2 PDfs parametrised by $Ax^B(1-x)^c(1+Dx+...)$
- DGLAP equations to higher Q² and calculate x-sections
- ☐ Compare the calculation to experimental data and adjust the free parameters by x² minimisation
- ☐ Heavy flavours treated according to RT-VFNS
- \Box Fixed strong coupling constant: a_s =0.1176
- ☐ HERAPDF1.0 obtained from combined HERA-I

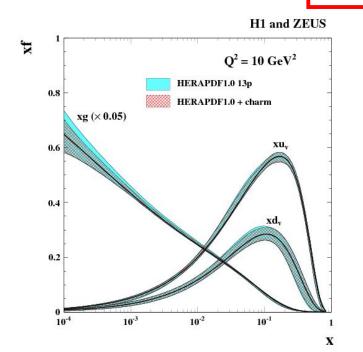
 data from H1 and ZEUS experiments (JHEP 1001:109(2010))
- Latest DGLAP analyses use open source HERAFitter 'package' which gives possibility to further improve PDFs by adding measurements from other experiments (Developers: H1, ZEUS, ATLAS and CMS)

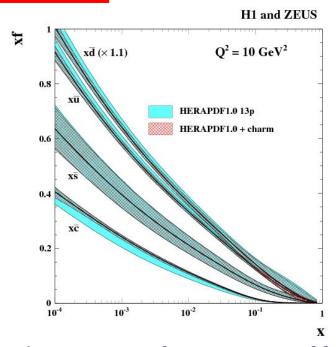

Inclusion of preliminary HERA-II high Q² data


H1prelim-10-142 and ZEUS-prel-10-018


 \triangleright Inclusion of the HERA-II high Q² data improves uncertainties of PDFs in the high x region especially visible for the valence quark distributions

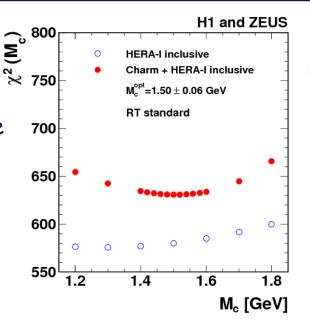
arXiv:1211.1182

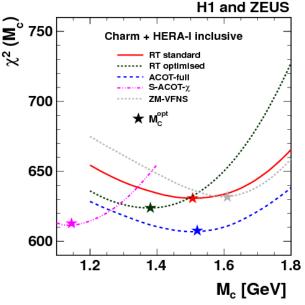



Significant improvement in precision obtained by combining H1 and ZEUS data

 \blacksquare Reasonable agreement with HERAPDF1.5 when taking into account uncertainty on m_c (1.35 < m_c < 1.65 GeV)

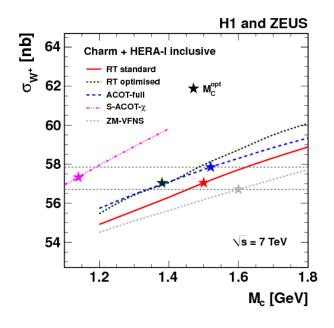
arXiv:1211.1182



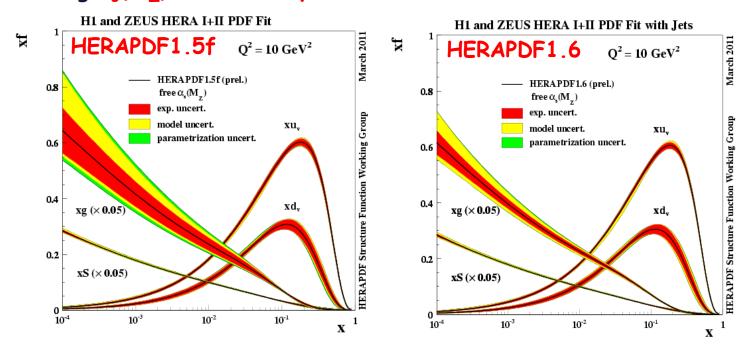


- ☐ The uncertainties of the valence quark distribution functions unaffected
- The uncertainty on the gluon distribution function reduced (due to the constraints that the charm data put on the gluon through the $\gamma g \rightarrow c\bar{c}$)
- $\hfill\Box$ The uncertainty on the $x\bar{c}$ distribution function is considerably reduced due to the constrained range of m_c

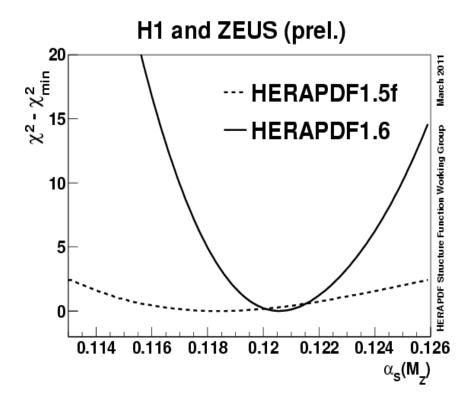
- ☐ Increased sensitivity to charm mass
- \Box The σ^{cc} allows to determine the optimal charm mass parameter (M_c^{opt}) for the various VFNS schemes


arXiv:1211.1182

- ☐ For all implementations of VFNS a similar monotonic dependence of the W[±] (and Z) production cross sections at the LHC on M_c is observed → significant spread of about 6% between the predictions
- \Box When using the M_c^{opt} for each scheme the spread of predictions is significantly reduced N. Raicevic


Excited QCD 2013

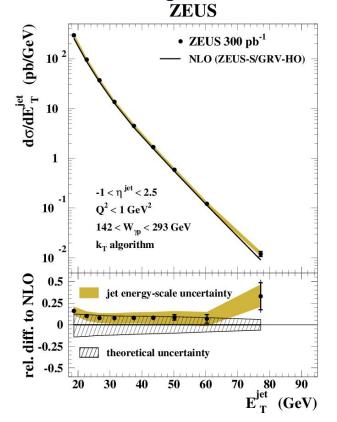
Inclusion of JETS

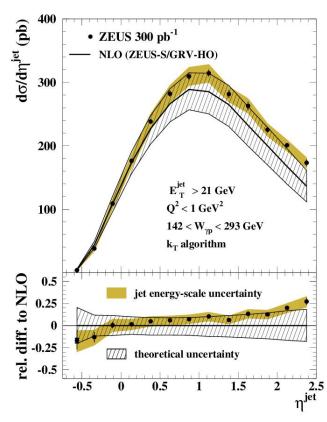

H1prelim-11-034 and ZEUS-prel-11-001

- ☐ HERAPDF1.6: the same input as for HERAPDF1.5 + 4 inclusive jet measurements from H1 and ZEUS
- \square HERAPDF1.6 to be compared to HERAPDF1.5f the same input as HERAPDF1.5 but treating $a_s(M_z)$ as a free parameter as in HERAPDF1.6

□ The jet data significantly reduce the correlation between the gluon PDF and a_s → improved precision of the gluon PDF and an unbiased determination of $a_s(M_z)$

as from HERAPDF1.6

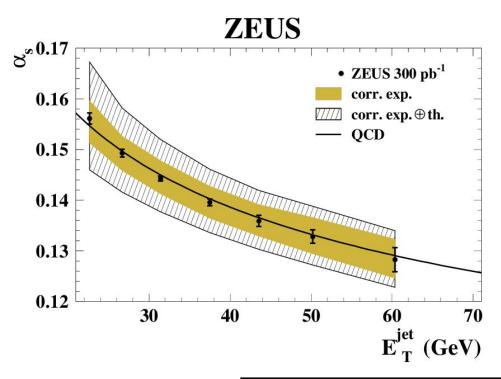

 \Box Local minimum in $\Delta X^2(a_s)$ pronounced only after including jet data


$$a_{S}(M_{Z}) = 0.1202 \pm 0.0013(exp.) \pm 0.0007(mod/param.) \pm 0.0012(had) +0.0036(th)$$

Inclusive jets in photoproduction

Nucl. Phys. B864 (2012), 1

 \Box Kinematic selection: Q² < 1 GeV², 0.2 < y < 0.85, 142 < W_{yp} < 293 GeV k_{T} algorithm, -1< η^{jet} < 2.5

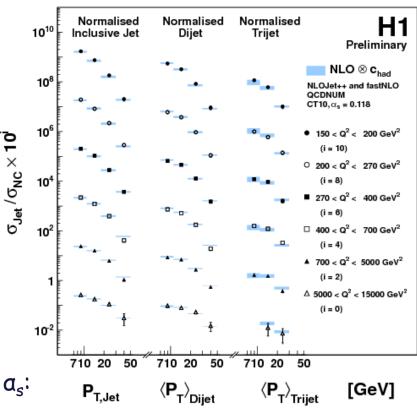


lacktriangle Reasonable description of data with NLO pQCD calculations for $\mathsf{E}_\mathsf{T}^\mathsf{jet}$ > 21 GeV

Inclusive jets in photoproduction

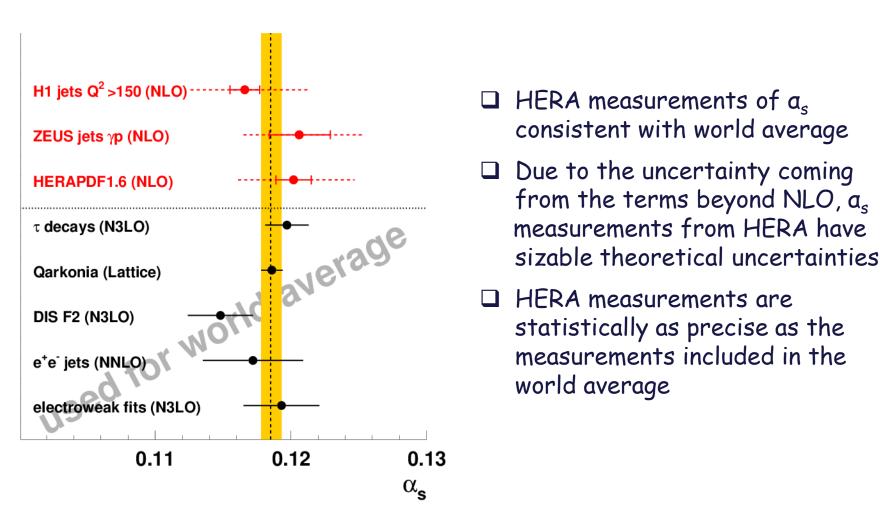
Nucl. Phys. B864 (2012), 1

- The a_s values determined in each E_t^{jet} value from the analysis of the measured dσ/dE_T^{jet} via NLO QCD fit (21 < E_T^{jet} < 71 GeV)</p>
 - Data are compared with QCD prediction of a_s at two loops


$$a_s(M_z) = 0.1206 + 0.0023 \text{ (exp)} + 0.0042 \text{ (th)}$$

- $\hfill\Box$ The dominant uncertainties due to missing higher orders and due to photon PDFs at high $\eta^{\rm jet}$
 - N. Raicevic

Normalised multijet cross sections at high Q² in DIS


H1prelim-12-031

- ☐ Kinematic selection: $150 < Q^2 < 1500 \text{ GeV}^2$, 0.2 < y < 0.7, $7 < P_T < 50 \text{ GeV}$ $5 < P_{T,i} < 50 \text{ GeV}$, $M_{1,2} > 16 \text{ GeV}$ (HERA-II)
- Compared to a previously published result on multijet cross sections:
- > an extended range in jet pseudorapidity
- an improved hadronic energy scale uncert. of 1%
- Measured cross sections described well with NLO QCD predictions
- Theoretical uncertainties dominated by missing higher orders in pQCD
- □ Combined NLO fit to normalised inclusive,
 dijet and trijet cross sections to extract a_s:

$$a_{S}(M_{Z}) = 0.1163 \pm 0.0008 \text{ (exp.)} \pm 0.0011 \text{ (had)} \pm 0.0014 \text{ (pdf)}^{+0.0044}_{-0.0035} \text{ (th)}$$

Summary on recent as measurements at HERA

Summary

- □ New measurements on NC and CC from HERA-II at high Q^2 from both experiments \rightarrow improvement for the valence quark distributions
- New combined measurement of charm production cross section at HERA
 → used as input for a detailed NLO QCD analysis
- \Box Jet measurements from HERA improve the gluon PDF and provide simultaneous determination of PDFs and a_s
- \square New jet measurements from both experiments \rightarrow new and more precise a_s from HERA
- > HERA experiments are providing unprecedented knowledge about proton structure
- > HERA results are important inputs for LHC predictions

Backup

Averaging procedure

- \square Swim all points to a common x-Q² grid
- ☐ Moved 820 GeV data to 920 GeV p-beam energy
- Calculate average values and uncertainties x² minimization in which the parameters are the true values of the cross section and the correlated systematic error parameters (arXiv:0904.0929)
- Evaluate "procedural uncertainties"

$$\chi_{\exp}^{2}(\boldsymbol{m},\boldsymbol{b}) = \sum_{i} \frac{\left[m^{i} - \sum_{j} \Gamma_{j}^{i} b_{j} - \mu^{i}\right]^{2}}{\Delta_{i}^{2}} + \sum_{j} b_{j}^{2}$$

- Exploit differences between H1 and ZEUS in detectors, methods and systematics to "cross-calibrate" and to reduce the systematic uncertainties.
- \Box For multiplicative error sources small biases to lower cross section values may occur. This can be avoided modifying the χ^2 definition as:

$$\chi_{\text{exp}}^{2}(\boldsymbol{m}, \boldsymbol{b}) = \sum_{i} \frac{\left[m^{i} - \sum_{j} \gamma_{j}^{i} m^{i} b_{j} - \mu^{i}\right]^{2}}{\delta_{i,\text{stat}}^{2} \left(m^{i} - \sum_{j} \gamma_{j}^{i} m^{i} b_{j}\right) + \left(\delta_{i,\text{uncor}} m^{i}\right)^{2}} + \sum_{j} b_{j}^{2}$$

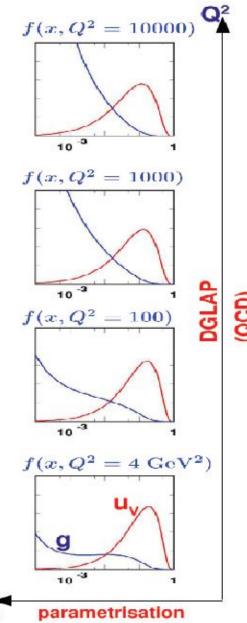
$$\gamma_j^i = \Gamma_j^i/\mu^i$$
 $\delta_{i,\text{stat}} = \Delta_{i,\text{stat}}/\mu^i$ $\delta_{i,\text{uncor}} = \Delta_{i,\text{uncor}}/\mu^i$

N. Raicevic

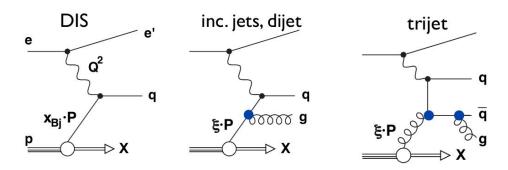
Excited QCD 2013

- □ DGLAP analysis based only on the HERA data:
- no need for heavy target corrections
- no strong isospin assumptions
- □ Some parameters in parametrisation functions constrained by the number and momentum sum rules

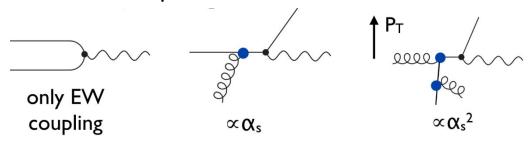
$$\sum$$
mom. = 1 $\int U_v dx = 2$ $\int d_v dx = 1$

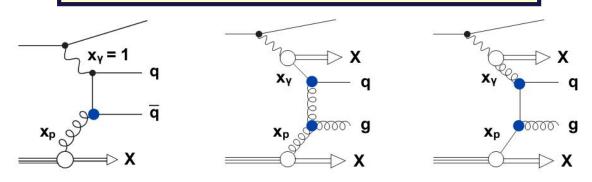

Fitted PDFs: $xg, xu_v, xd_v, xU = x\overline{u} + (x\overline{c}), xD = xd + x\overline{s} + (xb)$

Uncertainties


- \Box Experimental using $\Delta \chi^2 = 1$ criterion
- Model from variation of theory parameters:

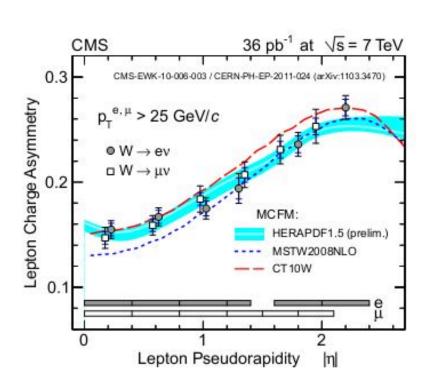
Variation	Standard Value	Lower Limit	Upper Limit
f_s	0.31	0.23	0.38
m_c [GeV]	1.4	$1.35^{(a)}$	1.65
m_b [GeV]	4.75	4.3	5.0
Q_{min}^2 [GeV ²]	3.5	2.5	5.0
Q_0^2 [GeV ²]	1.9	$1.5^{(b)}$	$2.5^{(c,d)}$


Parameterisation - from extra D, E, ... terms in parameterisation
 N. Raicevic
 Excited QCD 2013


Jet production in DIS

Boost to Breit frame, 2xP + q = 0

Jet production in photoproduction



N. Raicevic

direct photoproduction

resolved photoproduction

HERAPDF predictions for LHC

9 1.5 **ATLAS** Preliminary Ldt=37 pb1 Ratio wrt CTEQ anti-k, jds, R=0.4 0.5 CTBQ 6.6 1.5 MSTW 2008 NNPDF 2.1 HERAPOF 1.5 0.5 1.5 0.5 10³ p_{_} [GeV] 10²

W decay lepton asymmetry data from CMS

□ ATLAS jet data in the central region in ratio to the predictions of CTEQ6.6