PHOTON-2013

International Conference on the Structure and the Interactions of the Photon Paris, 20-24 May, 2013

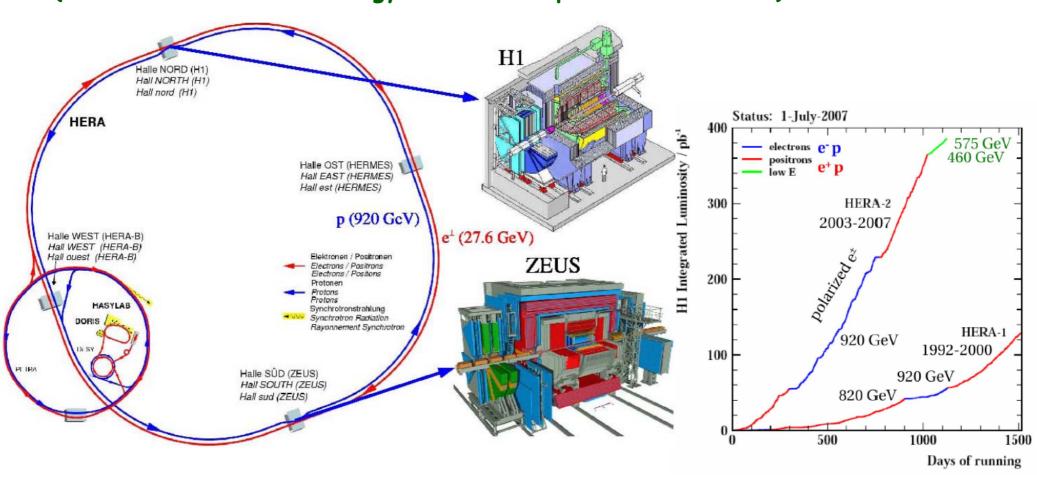
Diffractive Vector Meson Production at HERA

Armen Buniatyan

Physikalisches Institut Ruprecht-Karls-Universität Heidelberg

On behalf of the H1 and ZEUS Collaborations

- Introduction
- Diffractive J/ψ photoporoduction
- |t| dependence of exclusive Y(15) photoproduction
- Pion from factor from exclusive di-pion electroproduction

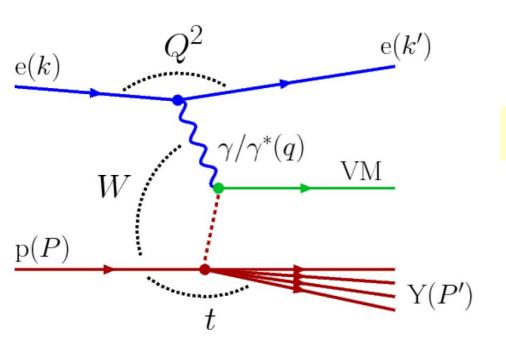

[H1 Coll., arXiv:1304.5162]

[ZEUS Coll., PLB 708 (2012) 14]

[ZEUS Coll., EPJC 72 (2012) 1869]

HERA

The world's only electron/positron-proton collider at DESY, Hamburg $E_e = 27.6 \text{ GeV}$ $E_p = 920 \text{ GeV}$ (also 820, 460 and 575 GeV) (total centre-of-mass energy of collision up to $\sqrt{s} \approx 320 \text{ GeV}$)

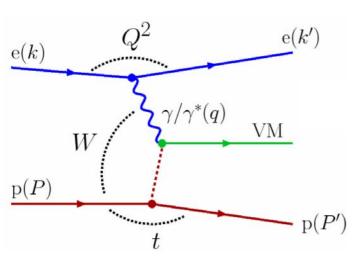


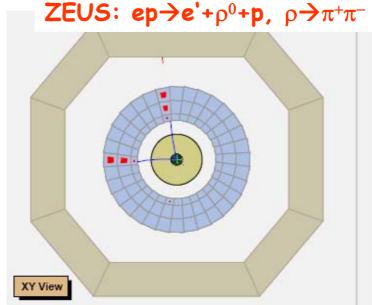
Two collider experiments: H1 and ZEUS

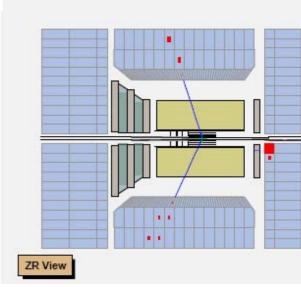
HERA-1: 1992 - 2000 HERA-2: 2003 - 2007

total lumi: 0.5 fb⁻¹ per experiment

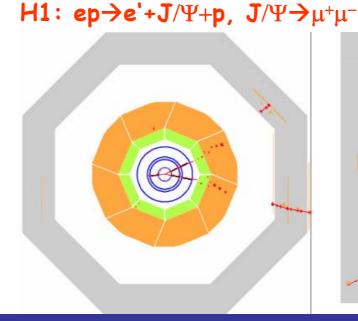
Introduction

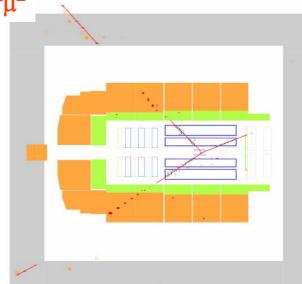


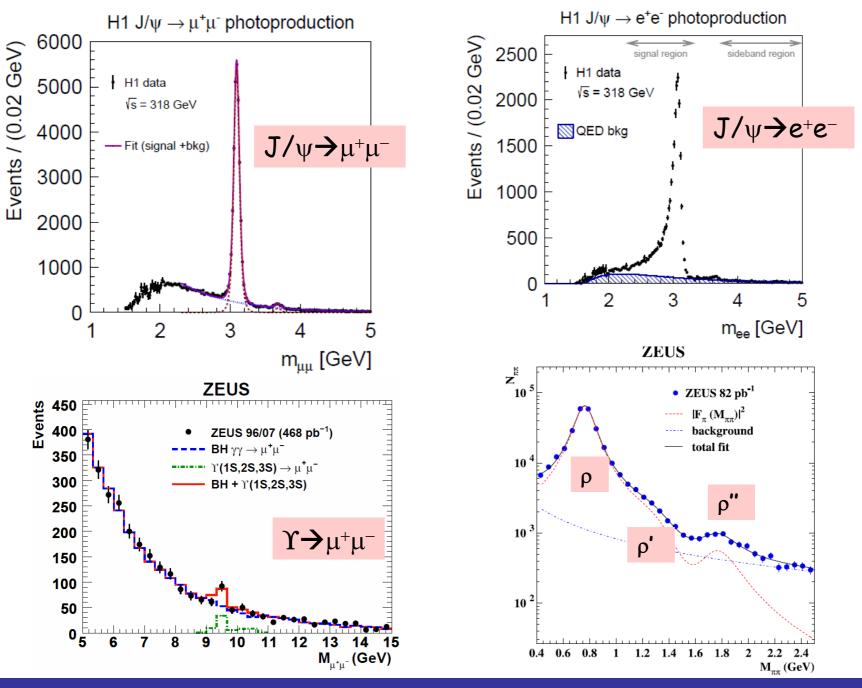

$$V=(\rho, \omega, \phi, J/\psi, \psi', \Upsilon, \gamma)$$


- no quantum numbers exchanged in the interaction
 - the proton stays intact or dissociates
- Q²=-(k-k')² photon virtuality:
 Q²~0 → 'photoproduction'
 Q²>0 → Deep Inelastic Scattering (DIS)
- W γ *p center of mass energy
- $t=(P-P')^2$ -momentum transfer squared at the proton vertex

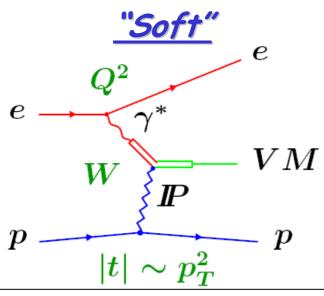
Introduction


Exclusive Vector Meson production - clean experimental signatures





- scattered e[±] reconstructed in e/m calorimeters (DIS) or undetected (photoproduction)
- scattered p undetected
- decay products of VM
- nothing else in the central detector

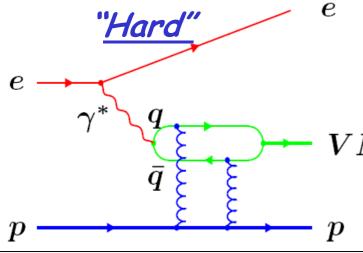


Vector Mesons mass distributions

Description of diffractive Vector Meson production

Regge theory and VDM model

$$\sigma \propto W^{\delta}$$


-Weak energy dependence, $\delta \sim 0.2$

$$\delta = 4(\alpha_{IP}(t) - 1)$$

 $\delta = 4(\alpha_{IP}(t) - 1)$ $\alpha_{IP}(t) = 1.08 + 0.25 \cdot t \text{ (DL)}$

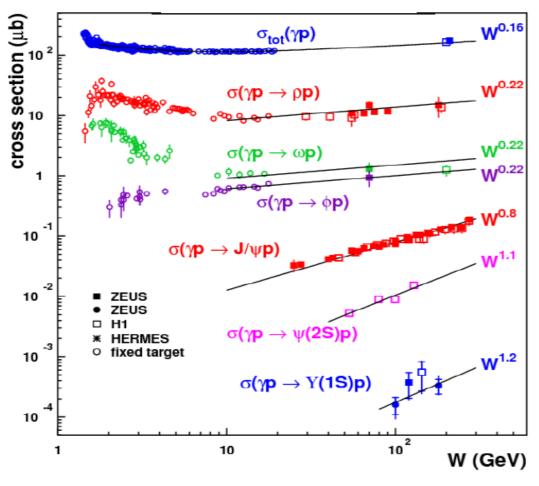
 $\frac{d\sigma}{dt} \propto e^{-bt}$ -Shrinkage of diffractive peak

$$b(W) = b_0 + 4 \alpha' ln \left(\frac{W}{W_0}\right); \quad b_0 \sim 10 \text{ GeV}^{-2}$$

in presence of hard scale: Q2,Mvm or t pQCD description (exchange of ≥2 gluons)

-Fast increase of cross section with energy due to gluon density in proton

$$\sigma \sim \left| x \ g(x,Q^2) \right|^2$$


Increasing W corresponds to going to small x

$$W^2 \propto \frac{1}{x}$$

- Expect δ to increase from 'soft' (~0.2) to 'hard' (~0.8)
- Expect b to decrease from 'soft' (~10 GeV-2) to 'hard' (~4÷5 GeV-2)

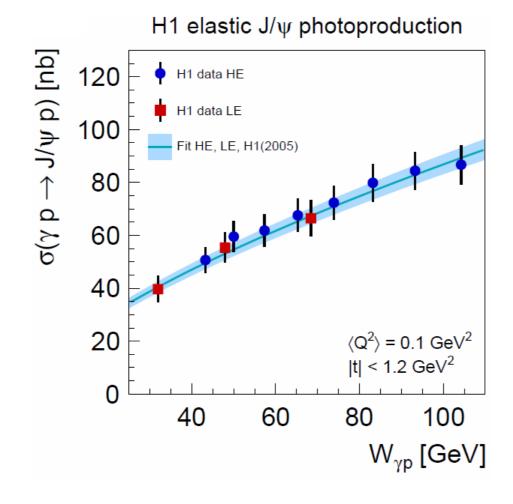
With HERA data it is possible to investigate the transition from "soft" to "hard" pomeron exchange processes with increasing of Q^2 , M_{VM} or t.

Elastic photoproduction of Vector Mesons $\gamma p \rightarrow VM+p (V=\rho,\phi,\omega,J/\psi,\psi',\Upsilon)$

W dependence $\sigma(W) \propto W^{\delta}$

Low mass (ρ, ω, ϕ) - no perturbative scale \rightarrow weak energy dependence

High mass $(J/\psi, \psi', \Upsilon)$ - perturbative scale \rightarrow strong energy dependence

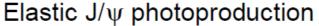

VM mass sets the hard scale of interaction

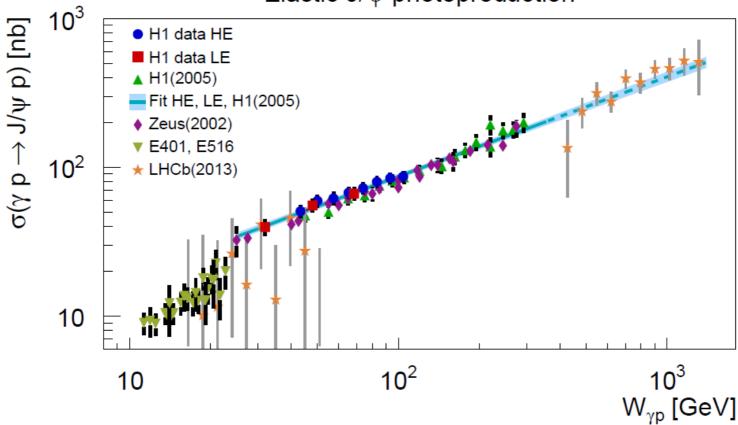
Process becomes hard (steeper W dependence) as M_{VM} becomes larger $(J/\psi, \psi', \Upsilon)$

Elastic J/ ψ photoproduciton cross Sections vs $W_{\gamma p}$

New H1 measurement: extension to lower $W_{\gamma p}$: two energy ranges HE ($W_{\gamma p}$ =40-110 GeV, \sqrt{s} =318 GeV) and LE ($W_{\gamma p}$ =25-80 GeV, \sqrt{s} =225 GeV)

arXiv:1304.5162

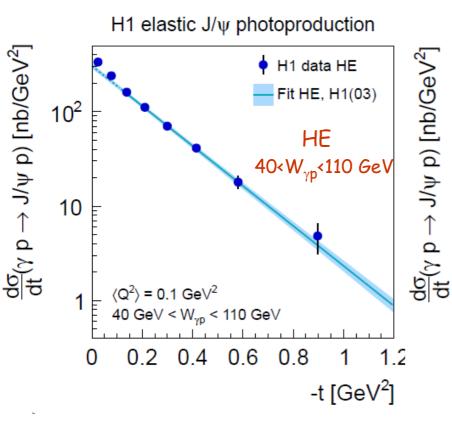


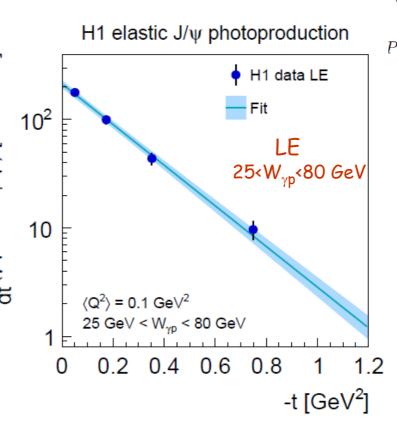

Fit function $\sigma \sim W_{\gamma p}^{\delta_{el}}$

$$\delta_{el}$$
=0.67 ± 0.03

HERA data in comparison with fixed target and LHCb data

arXiv:1304.5162




- New measurements in the transition region from fixed target to previous HERA data
- Good agreement with previous HERA measurements
- Fixed target data: steeper slope, lower normalisation
- \blacksquare Fit to H1 data extrapolated to higher $W_{\gamma p}$ describes the LHCb data

Elastic J/ψ Cross Sections vs t; b-slope

arXiv:1304.5162

t-momentum transfer squared at the proton vertex

$$\frac{d\sigma}{dt} \sim e^{-b_{el}|t|}$$

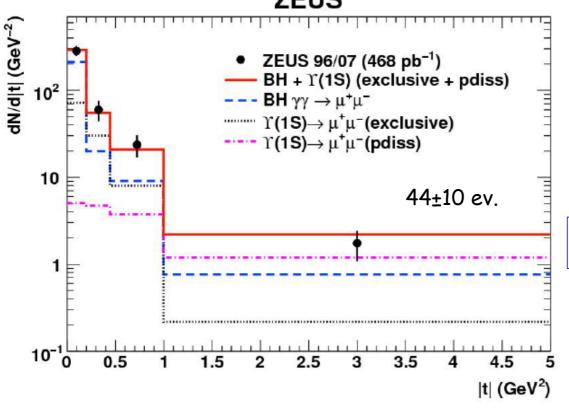
$$b_{el} = 4.88 \pm 0.15 \, GeV^2 (HE)$$

e(k)

 $W_{\gamma p}$

$$b_{el} = 4.3 \pm 0.2$$
 GeV² (LE)

e(k')

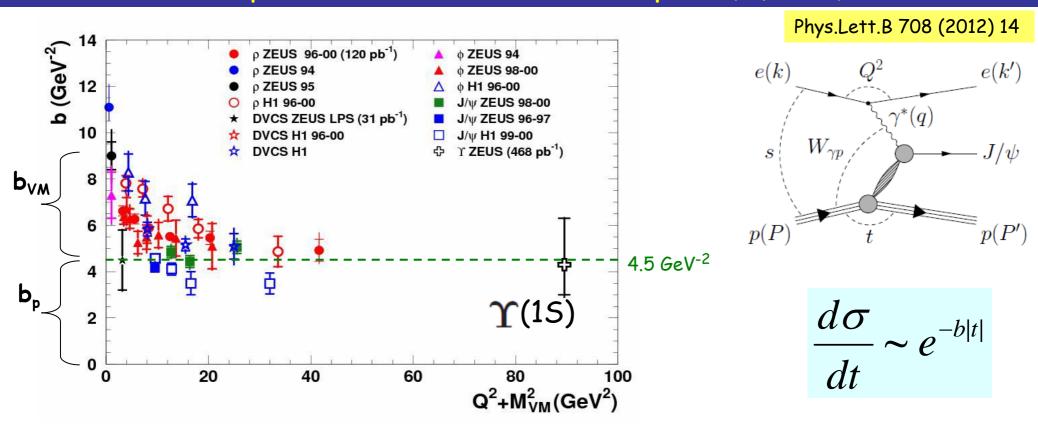

 $\gamma^*(q)$

Elastic $\Upsilon(1s)$ in photoproduction: b-slope

Phys.Lett.B 708 (2012) 14

$$\mathcal{L}$$
=468 pb⁻¹
 $Q^2 < 1 \text{ GeV}^2$
 $60 < W < 220 \text{ GeV}$

ZEUS



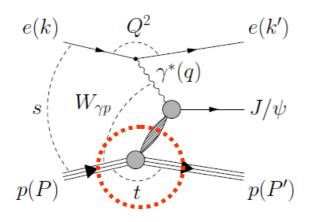
$$\frac{d\sigma}{dt} \sim e^{-b|t|}$$

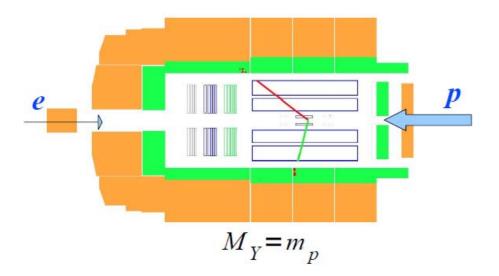
$$b = 4.3^{+2.0}_{-1.3}$$
 (stat.) $^{+0.5}_{-0.6}$ (syst.) GeV^{-2}

First determination of b slope for Υ (15)

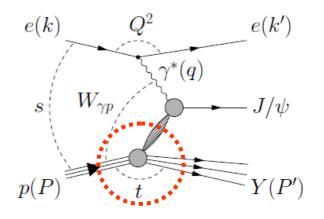
VM production and DVCS: t-slope $b(Q^2+M^2)$

Asymptotic behaviour of the slope parameter b with effective scale $Q^2+M_V^2$


- -b characterizes the size of interaction $(b=b_{VM}+b_p)$, expect **b** to decrease from 'soft' to 'hard'
- -b decreases with Q^2+M^2 from ~10 GeV-2 (soft process) to ~4.5 GeV-2 (hard process)

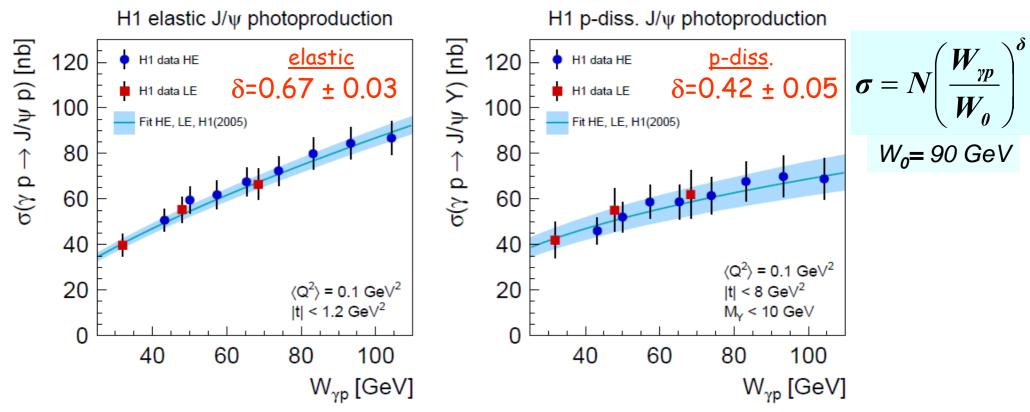

→ size of scattered VM getting smaller with Q²+M²

Elastic vs proton dissociative J/ψ photoproduction


What happens at the proton vertex?


Elastic process ep→e J/ ψ p

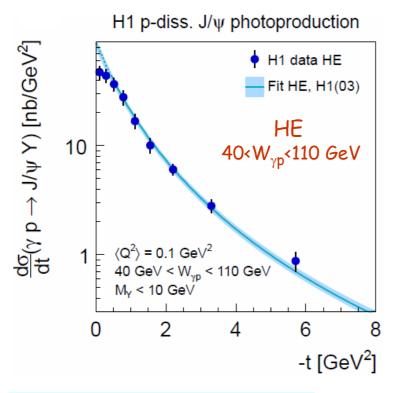
Proton dissociation process ep→e J/ ψ Y

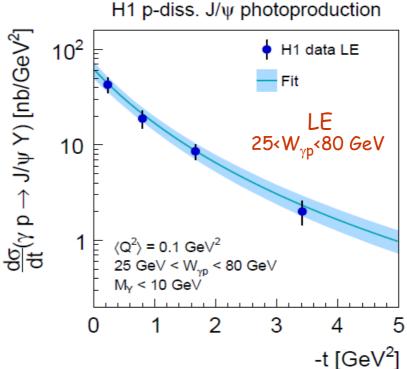


Elastic and p-dissociation Cross Sections vs $W_{\gamma p}$

arXiv:1304.5162

Elastic and proton-dissociation cross sections measured simultaneously using Regularised Unfolding


Simultaneous fit, taking into account correlations between elastic and p-diss. cross sections


$$N_{pd}/N_{el} = 0.81 \pm 0.10$$
 $\delta_{pd}-\delta_{el} = -0.25 \pm 0.06$

 ${}^{\rm ar{e}}$ Ratio $\sigma_{\rm pd}/\sigma_{\rm el}\,$ slowly decreasing with $W_{\gamma \rm p}\,$

Proton dissociative J/ψ Cross Sections vs t; b-slope

arXiv:1304.5162

$$\frac{d\sigma}{dt} = N_{pd} \left(1 + \frac{b_{pd}}{n} |t| \right)^{-n}$$

$$b_{pd}$$
= 1.79 ± 0.12 GeV² (HE)

$$b_{pd} = 1.6 \pm 0.2$$
 GeV² (LE)

(\rightarrow to be compared to b_{el} = 4.88 ± 0.15 GeV²) b_{pd} is significantly lower than b_{el}

(b is related to the transverse size of interaction: for p-diss. proton breaks \rightarrow b_{pd} is smaller then b_{el})

Pion Form Factor from Exclusive Dipion Production $\gamma^* p \rightarrow \pi^+ \pi^- p$

Eur.Phys.J.C 72 (2012) 1869

The two-pion invariant-mass distribution

- is related to the pion electromagnetic form factor
- includes the contributions of ρ , ρ' (radially excited 25 state) and ρ'' (orbitally excited 2D state) vector mesons

$$\frac{dN(M_{\pi\pi})}{dM_{\pi\pi}} \propto \left| F_{\pi}(M_{\pi\pi}) \right|^{2}$$

$$F_{\pi}(M_{\pi\pi}) = \frac{BW_{\rho}(M_{\pi\pi}) + \beta \times BW_{\rho'}(M_{\pi\pi}) + \gamma \times BW_{\rho''}(M_{\pi\pi})}{1 + \beta + \gamma}$$

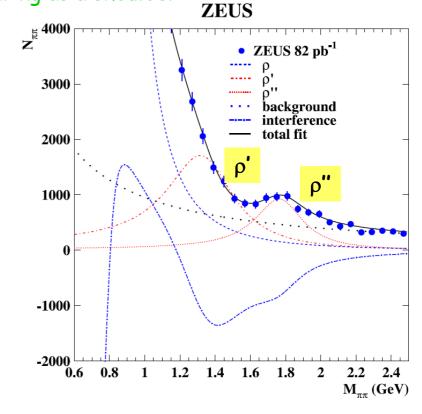
Kuhn-Santamaria parameterisation For $M_{\pi\pi}$ <2.5 GeV includes contributions from $\rho(770)$, $\rho'(1450)$ and $\rho''(1700)$

 β , γ - relative amplitudes

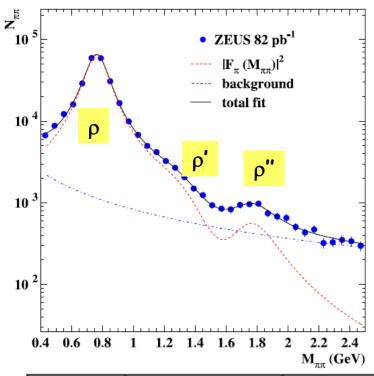
$$BW_{V}(M_{\pi\pi}) = \frac{M_{V}^{2}}{M_{V}^{2} - M_{\pi\pi}^{2} - iM_{V}\Gamma_{V}(M_{\pi\pi})}$$

Breit-Wigner amplitide

Exclusive dipion production $\gamma^* p \rightarrow \pi^+ \pi^- p$; fit to F_{π}

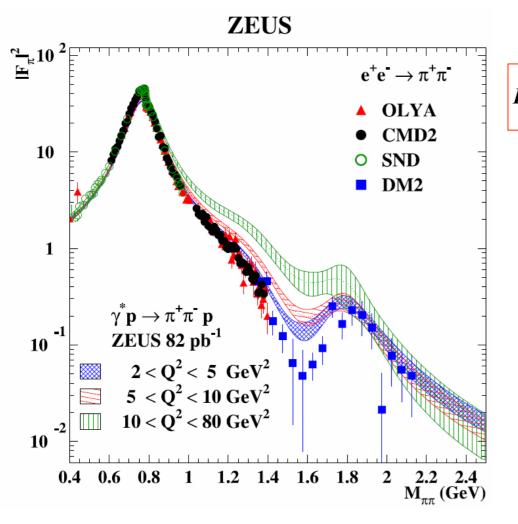


Eur.Phys.J.C 72 (2012) 1869


Fit to three resonances

$$F_{\pi}(M_{\pi\pi}) = \frac{BW_{\rho}(M_{\pi\pi}) + \beta \times BW_{\rho'}(M_{\pi\pi}) + \gamma \times BW_{\rho''}(M_{\pi\pi})}{1 + \beta + \gamma}$$

Negative interference between ρ , ρ' and ρ'' results in ρ' signal appearing as a shoulder


- Masses and widths consistent with expectations
- Relative amplitudes found to be real

Parameter	ZEUS	PDG
$M_{\rho} \; (MeV)$	$771 \pm 2^{+2}_{-1}$	775.49 ± 0.34
$\Gamma_{\rho} \; ({\rm MeV})$	$155\pm5\pm2$	149.1±0.8
β	$-0.27 \pm 0.02 \pm 0.02$	
$M_{\rho'} \; (MeV)$	$1350 \pm 20^{+20}_{-30}$	1465 ± 25
$\Gamma_{\rho'} \; ({\rm MeV})$	$460 \pm 30^{+40}_{-45}$	400±60
γ	$0.10 \pm 0.02^{+0.02}_{-0.01}$	
$M_{\rho''}$ (MeV)	$1780 \pm 20^{+15}_{-20}$	1720 ± 20
$\Gamma_{\rho''} \; ({\rm MeV})$	$310 \pm 30^{+25}_{-35}$	250 ± 100
B	$0.41 \pm 0.03 \pm 0.07$	
n	$1.30 \pm 0.06^{+0.18}_{-0.13}$	

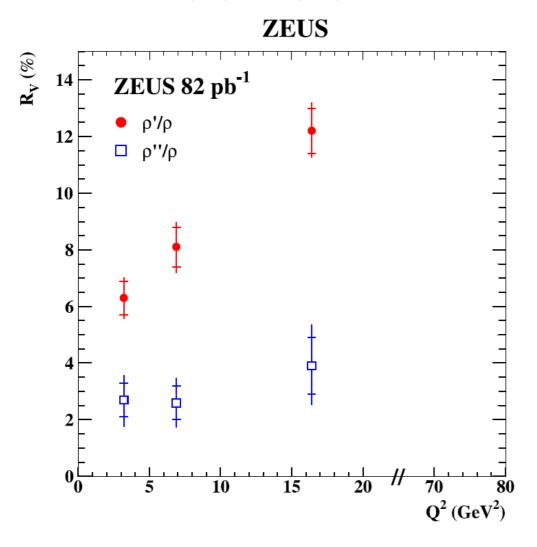
Exclusive dipion production $\gamma^* p \rightarrow \pi^+ \pi^- p$; Q² dependence of F_{π}

Eur.Phys.J.C 72 (2012) 1869

$$F_{\pi}(M_{\pi\pi}) = \frac{BW_{\rho}(M_{\pi\pi}) + \beta \times BW_{\rho'}(M_{\pi\pi}) + \gamma \times BW_{\rho''}(M_{\pi\pi})}{1 + \beta + \gamma}$$

- $-\beta$ increases with Q^2
- $-\gamma$ is independent of Q^2

Features of pion form factor in ep are similar to e^te⁻ (some differences in the interference region)


In the ρ peak, the pion form factor is highest at highest Q²

$Q^2(\mathrm{GeV}^2)$	2-5	5-10	10-80
β	$-0.249 \pm 0.008^{+0.005}_{-0.003}$	$-0.282 \pm 0.008^{+0.005}_{-0.008}$	$-0.35 \pm 0.02 \pm 0.01$
γ	$0.100 \pm 0.009 \pm 0.003$	$0.098 \pm 0.012^{+0.005}_{-0.003}$	$0.118 \pm 0.022^{+0.008}_{-0.006}$

Exclusive dipion production $\gamma^* p \rightarrow \pi^+ \pi^- p$

Eur.Phys.J.C 72 (2012) 1869

Ratios of ρ'/ρ and ρ''/ρ vs Q^2

$$R_{V} = \frac{\sigma_{V} \cdot Br_{V \to \pi\pi}}{\sigma_{\rho}} \quad V = \rho', \rho''$$

ρ'/ρ ratio increases with Q^2

- predicted by pQCD
- suppression at low Q^2 due to a node in the ρ' wave function

 ρ'' behaviour differs from that of ρ'

Conclusions

- HERA provides large amount of vector meson data in a wide kinematic range
- Interplay of soft and hard region can extensively be tested

New results:

- Differential cross sections have been measured for elastic and proton dissociative diffractive J/ ψ production as function of t and W $_{\gamma p}$ in the kinematical range |t| < 8 GeV² and 25< W $_{\gamma p}$ < 110 GeV.
- Differential cross section of elastic $\Upsilon(15)$ production as a function of t is measured; for the first time the b-slope for Υ is determined
- Asymptotic behaviour of b-slope vs (Q²+M²) is observed
- Pion formfactor $F_{\pi}(M_{\pi\pi})$ has been extracted, Q^2 dependence is observed
- Ratios of ρ'/ρ and ρ''/ρ vs Q^2 are measured. Strong rise of ρ'/ρ with Q^2 is observed