

Jets and α_s measurements at HERA

A.Baghdasaryan

On behalf of the H1 and ZEUS collaborations

Photon 2013, Paris 20 May 2013

HERA experiments

- ep collider:
- e[±] energy: 27.6 GeV
- p energy: 920 GeV
- Center of mass energy: 319 GeV
- 2 collider experiments: H1 and ZEUS
- Integrated luminosity: ~0.5 fb⁻¹ (per experiment)

 Q^2 – photon virtuality x_B – Bjorken scaling variable y – inelasticity in proton rest frame

2 kinematics regimes $Q^2 \approx 0 \text{ GeV}^2 - \text{Photoproduction } (\gamma p)$ $Q^2 > 1 \text{ GeV}^2 - \text{DIS}$

Jet Production

The study of jet production in ep collision at HERA is a testing ground for perturbative QCD (pQCD):

- Jet observables (normalised and non-normalised inclusive jet, dijet and trijet in electro- and photoproduction) used to test pQCD
- Jet cross sections provide a precise determinations of $\alpha_s(M_Z)$
- Jet production is sensitive to gluon PDFs
- Jet production in photoproduction is also directly sensitive to photon PDFs

Jet Production in DIS

Jet production at large P_T in Breit is sensitive to α_S directly

Jet Measurements in DIS at HERA

Differential and double differential cross sections and normalised to DIS cross sections are measured at: H1-Prelim-11-032

- photon virtuality 150 < Q² < 15000 GeV²
- inelasticity 0.2<y<0.7

H1-Prelim-11-032 H1-Prelim-12-031

• jet transverse momentum $P_T > 7$ GeV (inclusive) and $P_T > 5$ GeV (dijet and trijet).

High Statistics:

 $L \sim 300 \text{pb}^{-1}$ (small statistical uncertainties even at large Q² and P_T)

Excellent control of systematic uncertainties:

electron energy scale 0.5-1%, effect on cross sections <2% jet energy scale 1%, effect on cross sections 3-10% acceptance correction: 4-5% uncertainty

Triggers: 1-2% normalization uncertainty Luminosity: 2-2.5% normalization uncertainty

Single Differential Cross Sections at High Q²

-6 -

NLO QCD with $\mu_r = \sqrt{(Q^2 + P_T^2)/2}$ and HERAPDF 1.5 describes well inclusive jet, dijet and trijet single differential cross sections

-7- Normalised Double Differential Inclusive Jet Cross Sections

Benefit:

partial cancellation of experimental and theoretical uncertainties

Comparison with

NLOJet++ and QCDNUM corrected to hadronisation effects

Scale choice:

 $\mu_{f}^{2} = Q^{2},$ $\mu_{r}^{2} = (Q^{2} + P_{T}^{2})/2$

In all bins (besides the highest Q^2 and highest P_T) the experimental uncertainties are essentially smaller than the theoretical uncertainties

Normalised Multijet Cross Sections at High Q²

-8 -

NLO Calculation:

NLOJet++ and QCDNUM corrected for hadronisation effects

Scale Choice:

 $\mu_f^2 = Q^2$ $\mu_r^2 = (Q^2 + P_T^2)/2$

- Small experimental uncertainties
- Good NLO description
 of the data

Largest benefit is from a combined fit

simultaneous fit to normalised inclusive jet, dijet and trijet cross sections (all correlations are included)

Sensitive to higher orders

Theoretical uncertainties estimated by variation of scale, k-factor ($k = \sigma_{NLO}/\sigma_{LO}$) – an estimator of higher order contributions reaches values up to 1.45

Restrict analysis to k < 1.3

faster convergence of perturbative series trade-off between number of data points and smaller theoretical uncertainties

Normalised Multijets with k < 1.3

 χ^2 /ndf: 53.2/41 = 1.30

 $\alpha_s = 0.1163 \pm 0.0011 \text{ (exp)} \pm 0.0014 \text{ (PDF)} \pm 0.0008 \text{ (had)} \pm 0.0039 \text{ (theo)}$

Consistent with other $\alpha_s(M_Z)$ measurements Small experimental uncertainties Theoretical uncertainties are larger than the experimental

-9 -

-10- Jet Production in Photoproduction

- Direct sensitive to α_s, gluon and photon PDFs
- Large statistics
- Single hard scale E ^{jet}_T
- Multiparton interactions

direct photoproduction

resolved photoproduction

Single and double differential inclusive jet cross sections are measured as functions of jet transverse energy E_T^{jet} and pseudorapidity η^{jet} for

 $Q^{2} < 1 \text{ GeV}^{2}$

 γp centre-of-mass energies 142<W_{$\gamma p}<293$ GeV</sub>

and jets with

E_T^{jet} > 17 GeV -1 < η^{jet} < 2.5 **ZEUS. Nucl. Phys. B864 (2012), pp. 1-37**

Jets were identified using the k_T , anti- k_T and SIScone jet algorithms in laboratory frame.

Inclusive Jet Photoproduction

- $\mu_R = \mu_F = \mu = E_T^{jet}$
- PDFs: proton PDF -ZEUS-s, photon PDF GRV-HO, $\alpha_s = 0.118$

The NLO QCD calculation reproduce $d\sigma/dE_T^{jet}$ well, $d\sigma/d\eta^{jet}$ is well described for $\eta^{jet} < 2$

-11 -

Non-perturbative Effects

Data comparison to the NLO QCD calculation including an estimation of non-perturbative effects not related to hadronisation

Possible presence of effects in the data, which are not included in the NLO QCD calculation

Dependence on photon PDFs

-13 -

Some difference between three predictions, especially at low E^{jet}_{T} and high η^{jet}

Potential to constrain photon PDFs

Dependence on proton PDFs

Small difference between three predictions.

-14 -

Low sensitivity to proton PDFs

Inclusive Jet Photoproduction

Differential cross section based on k_T jet algorithm for inclusive jet photoproduction with E^{jet}_T >17 GeV in different η^{jet} regions.

Difference between data and NLO at large η^{jet} and low E^{jet}_{T} could be from photon PDFs or non-repturbative effects

The NLO QCD predictions give a good description of the data , except at low E_T^{jet} and high $d\eta^{jet}$

⁻¹⁶⁻ NLO QCD and Jet Algorithms Comparison

- the agreement of the data to the NLO prediction is the same for all three jet algorithms
- no sensitivity of the result on the choice of the jet algorithm used

Determination of $\alpha_s(M_z)$

The measured single differential cross sections based on the three jet algorithms were used to determine $\alpha_s(M_Z)$ values.

To minimise the effects of a non-perturbative contributions and reduce uncertainties coming from proton PDFs only the measurements for $21 < E^{jet}_{T} < 71$ GeV were used in the fit.

The values of $\alpha_s(M_Z)$ obtained from presented data are:

$$\begin{aligned} \alpha_s(M_Z)|_{k_T} &= 0.1206^{+0.0023}_{-0.0022} \text{ (exp.)} {}^{+0.0042}_{-0.0035} \text{ (th.)}, \\ \alpha_s(M_Z)|_{\text{anti-}k_T} &= 0.1198^{+0.0023}_{-0.0022} \text{ (exp.)} {}^{+0.0041}_{-0.0034} \text{ (th.)}, \\ \alpha_s(M_Z)|_{\text{SIScone}} &= 0.1196^{+0.0022}_{-0.0021} \text{ (exp.)} {}^{+0.0046}_{-0.0043} \text{ (th.)}. \end{aligned}$$

The value of $\alpha_s(M_Z)$ determined from the k_T , anti- k_T and SIScone measurements are nicely agreeing

These determinations are consistent with previous determinations of $\alpha_s(M_Z)$ and have a precision comparable to those obtained from e⁺e⁻ experiments

-17 -

Comparison of $\alpha_s(M_z)$ Values

Uncertainties: exp. —— theo. -----

-188-

Summary

Experimental Data

- HERA jet data among the most precise data for precision test of QCD
- pQCD calculations in general describe the data
 - Precision Measurement of Jet Production in DIS
 - absolute and normalised single and double differential cross sections
 - multi-dimentional unfolding of various measurements simultaneously
 - Precision Measurement of Jet Production in Photoproduction
 - absolute and normalised single and double differential cross sections based on the three jet algorithms (k_T, anti- k_T, SIScone)
 - The three jet algorithms give very similar results

Extraction of $\alpha_s(M_z)$

 Both measurements are used to extract α_s(M_z) yielding values consistent with the world average and having an experimental precision competitive with other extraction methods

Theory

• Missing higher orders often the dominated source of uncertainty

-19 -