Measurement of Deeply Virtual Compton Scattering in ep collisions at HERA

Università della Calabria Dipartimento di Fisica Marcella Capua

Calabria University and INFN

1

M. Capua - Low X, Israel, 30 May - 04 June 2013

HERA colliding experiments overview

DVCS at HERA

Main kinematic variables

Together with VMs measurements to investigate the transition from soft to hard regime is possible at HERA

>DVCS is the cleanest way to access Generalized Parton Distribution (GPD)

>GPSs are an ingredient for estimating diffractive cross sections at LHC

GPD

DVCS processes studied in a wide kinematic range at HERA

<u>ZEUS – HERA I</u> Phys. Lett. B 573 (2003) 5<Q²<100 GeV² 40<W<140 GeV (95.0+16.7pb⁻¹)

JHEP05(2009)108 1.5<Q²<100 GeV² 40<W<170 GeV (61.1pb⁻¹) 0.08<|t|<0.53 GeV² (31.3 pb⁻¹)

<u>H1- HERA I</u>

Eur. Phys. J. C 44 (2005) 2<Q²<80 GeV² 30<W<140 GeV (46.5 pb⁻¹)

 $\frac{H1 - HERA II}{Phys.Lett.B659 (2008) (145 pb^{-1})}$ Phys.Lett.B681 (2009) (306 pb^{-1}) 6.5<Q²<180 GeV² 30<W<140 GeV $|t|<1.0 GeV^{2}$

H1

HERA II 2004-2007 e[±] beam charge available 6.5<Q²<180 GeV² 30<W<140 GeV |t|<1.0 GeV²

7

H1 DVCS cross section measurements

 $e \frac{p \nabla cs}{p} e'$

Phys.Lett.B681 (2009)

HERA I and II :

- results in agreement
- precision improved

Data compared with: - dipole model - GPD model (see later)

ZEUS DVCS cross section measurements

e dvcs

р

 O^2

p'

ννγ

p

DVCS W-dependence vs Q²

DVCS W-dependence shows a hard regime even at low Q² similar to heavy VMs

W-dependence summary

Common hardening of $\alpha_{IP}(0)$ with μ^2 δ increases with μ^2 (from soft to hard)

11

DVCS - t dependence

b_{el}=5.45 ±0.19 ± 0.34 GeV⁻² (Q²= 8 GeV² W= 82 GeV)

First measurement: $b_{inel}=1.53 \pm 0.26 \pm 0.44 \text{ GeV}^{-2}$ $Q^{2}= 10 \text{ GeV}^{2}$ W= 82 GeV

mass of the p diss system: 1.4<M_Y<10GeV

306 pb⁻¹

DVCS - t dependence

$$\frac{d\,\sigma}{dt} \propto e^{-b\,|t|}$$

 $b_{el} = 4.5 \pm 1.3 \pm 0.4 \text{ GeV}^{-2}$ (Q²= 3.2 GeV²)

31.3 pb⁻¹

At ZEUS do/dt measured for the first time by a direct measurement of the outgoing proton 4-momentum using the LPS spectrometer

No p dissociation background → Clean measurement

Low detector acceptance \rightarrow low statistics

DVCS - b dependence

10 b [GeV⁻²] Dipole model H1 GPD model 8 6 4 H1 HERA II H1 HERA I 2 **ZEUS HERA I** (a) W = 82 GeV 0 <u></u> 20 25 5 15 10 30 $Q^2 [GeV^2]$ b [GeV⁻²] 8 H1 H1 HERA II Dipole model GPD model 6 5 (b) 4 $Q^2 = 10 \text{ GeV}^2$ 3 20 40 60 80 120 100 W [GeV]

H1: Phys.Lett.B681 (2009)

no strong Q² dependence

 $b(Q^2) = A(1 - B \log(Q^2/2))$

(Phys.Rev. D68 (2003) 096006)

b(Q²) used for GPD model (Eur. Phys. J. C 58, 2008)

No DVCS data enter for dipole model parameters (Marquet, Peschanski,Soyez, Phys. Rev. D 76, 2007)

no W dependence

 $b_{el} = 5.41 \pm 0.14 \pm 0.31 \text{ GeV}^2$ (Q²= 10 GeV² W=82GeV)

t dependence

Similar slope for all VM vs scale

• b characterize the transversal size of interaction ($b=b_V+b_p$), large dipole for light VM, the size became smaller with scale, where: $b_V=1/(Q^2+M^2)$ $b_p\sim 5 \text{ GeV}^{-2}$

> b decreases with increasing scale (from soft to hard)

QCD interpretation

H1: Phys.Lett.B659:796-806,2008

S, Q² evolution of GPDs (removing b(Q²) dependence)

compared with GPD model including a pQCD skewed evolution provide a reasonable description

R, the magnitude of the skewing effect:

 $R = \frac{4\sqrt{\pi \sigma_{DVCS} b(Q^2)}}{\sigma_T(\gamma^* \, p \to X) \sqrt{(1+\rho^2)}}$

ratio of the imaginary parts of the DVCS and DIS amplitudes \rightarrow GPDs/PDFs The skewing factor is close to 2

Dipole model approach to describe DVCS

H1: Phys.Lett.B659:796-806,2008

(Marquet, Peschanski,Soyez, Phys. Rev. D 76, 2007)

BCA measured at HERA

DVCS and BH: identical final state \rightarrow Interfere

Photon production amplitude: $|A|^2 = |A_{DVCS}|^2 + |A_{BH}|^2 + |A_I|^2$

Beam charge asymmetry:
$$A_C = \frac{d\sigma^{+} - d\sigma^{-}}{d\sigma^{+} + d\sigma^{-}} = p_1 \cos \phi \propto Re(A_{DVCS}) \cos \phi$$

(Belitsky, Mueller, Kirchner convension hep-ph/0112108)

BCA measured at HERA

GPDs based model compatible with data

DVCS amplitude is positive

Summary

DVCS studied at HERA and new measurements are coming

DVCS measurements contributes to the understanding of the transition from the soft to the hard regime

HERA represents a powerful 'instrument' to understand diffraction in perturbative regime and to complete the mapping of the proton structure

Very important impact on GPD determination at low x

DVCS strategy at HERA

