Recent charm production measurements at HERA

Low x workshop 2013, Eilat, Israel 3th june 2013

Olaf Behnke (DESY) on behalf of

The HERA ep collider (1992-2007)

Charm production at HERA

Large contributions to incl. DISSensitive to g(x)

HFL schemes

- Combine D*, D⁺, D⁰, μ and lifetime tag data
- take correlated systematics fully into account

How well does the mixed massivemassless scheme (GM-VFNS) work?

Combined charm data vs NLO GM-VFNS

EPJ C73 (2013) 2311

PDF plus charm mass parameter fit EPJ C73 (2013) 2311

→ Various GM-VFNS: interpolate differently between massive and massless schemes → different quality of charm data description for fixed M_c → compensate by M_c^{opt} values → stabilises flavour mixture in PDF → stabilises LHC predictions (W,Z)

Z, W cross section predictions for LHC EPJ C73 (2013) 2311

Impact of charm data on PDF Example: RT optimal scheme EPJ C73 (2013)

H1 and ZEUS

How well does the rigorous massive scheme (FFNS) work?

Combined charm data vs ABM FFNS prediction ^{EPJ C73 (2013)}

Use MS running mass NLO+ partial NNLO

→ Very good description everywhere

Fit: PDF plus MS *running* charm mass

EPJ C73 (2013) 2311

Brand new ZEUS results in DIS: D* production DESY-13-054

- → Most precise ZEUS charm measurement
- → well described by massive NLO (HVQDIS) ⊗ fragmentation model over the whole Q² and x range

 \rightarrow Not perfect, but reasonable description by massive NLO \otimes fragmentation model

Brand new ZEUS results in DIS: D⁺ production DESY-13-028

→ The massive (NLO) scheme "**prevails**" up to $Q^2 \sim 1000 \text{ GeV}^2$

Brand new charm results in DIS: D* and D+

DESY-13-054 DESY-13-028

Inelastic J/ ψ production in PHP

JHEP02 (2013) 071

Conclusions

- HERA combined charm data in DIS provide unique precision data for testing treatment of heavy quark mass terms in pQCD:
 - variable flavour number schemes:
 - Data can separate between them
 - Can be compensated by optimal charm mass value
 - improve knowledge of sea flavour decomposition
 - Fixed flavour number scheme:
 - Provides the best data description
 - Fit running $m_c(m_c) = 1.26 \pm 0.06 \text{ GeV}$ (NLO)
- Brand new ZEUS D* and D⁺ data in DIS → precise results, will further improve HERA charm combination
- New ZEUS J/ ψ photoproduction results: colour octet terms essential in improved NRQCD NLO calculations to match the data

Backup slides

Charm contribution to DIS: F₂^{cc}

 $rac{d^2 \sigma^{ep}}{dQ^2 dx} \propto F_2(x,Q^2)$

 $\frac{d^2 \sigma^{ep \to c\bar{c}}}{dQ^2 dx}$ $\propto F_2^{c\bar{c}}(x,Q^2)$

Beauty photoproduction vs p_T^b

Beauty: HERA photo- vs LHC hadroproduction

MC@NLO: - describes both data reasonably (however fails ATLAS d²σ/dpt/dy) - comparable (rather large) theory uncertainties

Charm fragmentation fractions in PHP

to be submitted soon for DESY preprint

→ Competitive precision to e+e- data
→ Confirm *universality* of charm fragmentation