# Recent Results on J/ $\psi$ Photoproduction at HERA

# Michel Sauter Ruprecht-Karls-Universität Heidelberg

# ICNFP 2013 August 2013, Crete



### The HERA ep collider (1992 - 2007) at DESY in Hamburg

- ep collider:
- $e^{\pm}$  energy: 27.6 GeV
- p energy: 920 GeV, 460 GeV
- Center of mass energy: 318 GeV, 225 GeV
- 2 collider experiments: H1 and ZEUS





ZEUS

# Elastic, proton dissociative and inelastic J/ $\psi$ production at HERA



• elastic







• inelastic 10 GeV « M<sub>v</sub>





Elastic and Proton-Dissociative Photoproduction of  $J/\psi$ Mesons at HERA, DESY-13-058, Eur. Phys. J. C73 (2013) 2466 Measurement of Inelastic J/ $\psi$  and  $\psi'$ Photoproduction at HERA, DESY-12-226, JHEP 1302 (2013) 071

Michel Sauter

J/ψ Production at HERA

# HERA as a $\gamma^* p$ collider to study diffractive VM production

 $Q^2$ 

W<sub>yp</sub>

 $M_{v}$ 

S

t

- Kinematics and scales:
  - Photon virtuality:
  - Squared cm energy of ep system:
  - CM energy of γp system:
  - (4-mom. transfer) at p vertex:
  - Vector meson mass:
- Diffractive vector meson production can be studied at HERA as a function of several scales Q<sup>2</sup>, M<sub>v</sub>, t over a wide range of W<sub>yp</sub>.
- Two kinematic regimes:
  - Photoproduction:



$$VM = (\rho, \, \omega, \, \varphi, \, J/\psi, \, \psi', \, Y)$$

Deep Inelastic Scattering: 
$$Q^2 > 1 \text{ GeV}^2$$
  
(scattered electron detected)

 $Q^2 \approx 0 \text{ GeV}^2$ 

- Two ep cm mass energies:
  - $\sqrt{s} = 318 \text{ GeV}$  (high energy, HE)
  - $\sqrt{s} = 225 \text{ GeV} (\text{low energy, LE}) \rightarrow \text{also low W}_{\text{m}}$

Michel Sauter

J/ψ Production at HERA

# Theoretical models for diffractive Vector Meson production

# Regge Approach

• "soft region"



- Soft Pomeron IP exchange  $\alpha_{p}(t) = \alpha_{0} + \alpha' t$   $\alpha_{0} = 1.08, \alpha' = 0.25 \, GeV^{-2}$  (DL)  $\frac{d \sigma}{dt} \propto e^{bt} \left( \frac{W_{\gamma p}}{W_{0}} \right)^{\delta} \qquad \delta = 4(\alpha_{0} - 1)$  $b = b_{0} + 4\alpha' \ln \left( \frac{W_{\gamma p}}{W_{0}} \right)$
- Weak energy dependence of  $\sigma \propto W_{\gamma p}^{\delta}$

# pQCD Approach

• "hard region", scales for pQCD:  $Q^2$ ,  $M_v$ , t



- Exchange of  $\geq 2$  gluons:
  - 1. Virtual photon fluctuates into qq pair
  - 2. which interacts with the proton trough the exchange of a two gluon-ladder
  - 3. qq recombines into VM.
- VM cross section has sensitivity to squared gluon density in proton:

$$\begin{cases} \sigma \propto [x g(x, \mu^2)]^2 \\ x = \mu^2 / W^2 \\ \mu^2 \propto (Q^2 + M_V^2) \end{cases}$$



With increase of VM mass  $(M_v)$  process gets harder:

- Consistent with soft models,  $\delta \sim 0.2$
- Cross section rises faster,  $\delta > 0.2$ 
  - → "hard regime"
    → sensitivity to gluon density in proton:

 $\boldsymbol{\sigma} \propto [x \ g(x, M_v)]^2$ 

- Cross section approximately behaves like:  $d\sigma / dt \propto e^{-bt}$
- b is related to the quadratic sum of sizes of the target and projectile:

 $\mathbf{b} = \mathbf{b}_{\mathrm{V}} + \mathbf{b}_{\mathrm{P}}$ 

- If the target (i.e. proton) breaks, b<sub>p</sub> does not count, i.e. b has to be smaller for p-diss. Since cross section of elas and p-diss is similar, p-diss dominates at large t.
- b decreases with the scale  $\mu^2 = (Q^2 + M_V^2)/4$ from ~10GeV <sup>-2</sup> (soft scale) ~5GeV <sup>-2</sup> (hard scale) for elastic and from ~3GeV <sup>-2</sup> (soft scale) ~1.5GeV <sup>-2</sup> (hard scale) for p-dis.



b [GeV<sup>-2</sup>]

# Elastic and Proton dissociative Photoproduction of $J/\psi$ Mesons at HERA

- New H1 analysis, DESY-13-058, Eur. Phys. J. C73 (2013) 2466, arXiv:1304.5162
- Extends the range to lower  $W_{yp}$ 
  - Use data from HERA low energy run
- Use Fast Track Trigger (FTT)
  - Purely track based information
  - Triggers on electron and muon decay channels:  $J/\psi \rightarrow e^+e^-, J/\psi \rightarrow \mu^+\mu^-$
- Simultaneous measurement of elastic and proton-dissociative process.
- Use forward detectors (FTS, Plug, LAr) to tag proton dissociative process at low |t|.
- Measure proton dissociative process to low |t| values.



# Signal extraction from invariant mass distributions



#### $J/\psi \rightarrow \mu^{\pm}\mu^{\pm}$ Fits to signal and non-resonant μμ LE background distributions Functions: Student't for signal, exponential for background.

 $\sim$ 30000 events for HE and ~2300 events for LE

# $J/\psi \rightarrow e^{\pm}e^{\pm}$

- Non-resonant background subtracted by QED simulation and counting of events in signal region.
- Procedure insensitive to low m tail due to QED radiation losses and Bremsstrahlung.
- Possible, since no other background other than QED in selection.
- $\sim$ 24000 events for HE and ~1800 for LE.

Michel Sauter

J/ψ Production at HERA

5

3

signal region

3

4

m<sub>uu</sub> [GeV]

sideband region

ee LE

4

m<sub>ee</sub> [GeV]

# Elastic and proton dissociative cross sections as a function of t



#### Phenomenological fit model:

• Elastic:

 $d\sigma/dt = N_{el} e^{-b_{el}|t|}$ 

• Proton dissociative:

 $d\sigma/dt = N_{pd} (1 + (b_{pd}/n) |t|)^{-n}$ 

- Simultaneous  $\chi^2$  fit of elastic and p.-diss. cross sections:
  - including all correlations.
    - including previous H1 high t-data (DESY-03-061, hep-ex/0306013)
  - excluding 2 lowest |t|-points.

| Data period | Process                         | Parameter | Fit value                              | Correlation                                                                                                                          |
|-------------|---------------------------------|-----------|----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|
| HE          | $\gamma p  ightarrow J/\psi  p$ | $b_{el}$  | $(4.88\pm 0.15){\rm GeV^{-2}}$         | $\begin{array}{l} \rho(b_{el},N_{el})=0.50\\ \rho(b_{el},b_{pd})=0.49\\ \rho(b_{el},n)=-0.21\\ \rho(b_{el},N_{pd})=0.68 \end{array}$ |
|             |                                 | $N_{el}$  | $(305\pm17)\mathrm{nb}/\mathrm{GeV^2}$ | $\begin{array}{l} \rho(N_{el}, b_{pd}) = 0.23 \\ \rho(N_{el}, n) = -0.07 \\ \rho(N_{el}, N_{pd}) {=} 0.46 \end{array}$               |
|             | $\gamma p \to J/\psi  Y$        | $b_{pd}$  | $(1.79\pm0.12){\rm GeV^{-2}}$          | $\rho(b_{pd}, n) = -0.78$<br>$\rho(b_{pd}, N_{pd}) = 0.76$                                                                           |
|             |                                 | n         | $3.58\pm0.15$                          | $\rho(n,N_{pd}) \text{=-} 0.46$                                                                                                      |
|             |                                 | $N_{pd}$  | $(87\pm10)\rm nb/GeV^2$                |                                                                                                                                      |
| LE          | $\gamma p 	o J/\psip$           | $b_{el}$  | $(4.3 \pm 0.2) \mathrm{GeV^{-2}}$      | $\begin{split} \rho(b_{el}, N_{el}) &= 0.37 \\ \rho(b_{el}, b_{pd}) &= 0.10 \\ \rho(b_{el}, N_{pd}) &= 0.41 \end{split}$             |
|             |                                 | $N_{el}$  | $(213\pm18)\mathrm{nb}/\mathrm{GeV^2}$ | $\begin{split} \rho(N_{el}, b_{pd}) &= -0.24 \\ \rho(N_{el}, N_{pd}) &= -0.10 \end{split}$                                           |
|             | $\gamma p \to J/\psi  Y$        | $b_{pd}$  | $(1.6\pm0.2){ m GeV^{-2}}$             | $\rho(b_{pd},N_{pd}){=}0.53$                                                                                                         |
|             |                                 | n         | 3.58 (fixed value)                     |                                                                                                                                      |
|             |                                 | $N_{pd}$  | $(62\pm12)\mathrm{nb}/\mathrm{GeV^2}$  |                                                                                                                                      |

Michel Sauter

J/ψ Production at HERA

ICNFP 2013, 10

# Proton dissociative cross sections as a function of t



- Comparison with the previous high-|t| measurement (H1 03)
- Good agreement in overlap region.
- New proton dissociative measurement extends the reach to very low |t| values.

# Elastic and proton dissociative cross sections as a function of $W_{\gamma p}$



#### elastic





### Phenomenological fit model:

- Parametrisation (for elastic and p-diss.)  $\sigma = N (W_{\gamma p} / W_0)^{\delta}$  with  $W_0 = 90 \text{GeV}$
- Simultaneous  $\chi^2$  fit of elastic and p.-diss. cross sections:
  - including all correlations.
    - including previous H1 data (DESY-05-161, hep-ex/0510016)

| Process                         | Parameter               | Fit value                                                      | Correlation                                                                                                                                      |
|---------------------------------|-------------------------|----------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|
| $\gamma p 	o J/\psip$           | $\delta_{el}$           | $0.67\pm0.03$                                                  | $\begin{split} \rho(\delta_{el}, N_{el}) = & -0.08 \\ \rho(\delta_{el}, \delta_{pd}) = & 0.01 \\ \rho(\delta_{el}, N_{pd}) = & 0.09 \end{split}$ |
|                                 | $N_{el}$                | $81\pm3\mathrm{nb}$                                            | $\begin{split} \rho(N_{el}, \delta_{pd}) &= \text{-0.27} \\ \rho(N_{el}, N_{pd}) &= \text{-0.18} \end{split}$                                    |
| $\gamma p  ightarrow J/\psi  Y$ | $\delta_{pd} \\ N_{pd}$ | $\begin{array}{c} 0.42\pm0.05\\ 66\pm7\mathrm{nb} \end{array}$ | $\rho(\delta_{pd},N_{pd}){=}0.09$                                                                                                                |

# Ratio of elastic and proton dissociative versus W



- Ratio of elastic and proton dissociative cross is approximately equal to 1.
- A slight dependence of this ratio as a function of  $W_{\gamma p}$  is observed, which can be parametrized as  $N_R (W_{\gamma p}/W_0)^{\delta R}$  with  $N_R = 0.81 \pm 0.11$ ,  $\delta R = -0.25 \pm 0.0.06$

#### $J/\psi$ Production at HERA

H1 elastic J/w photoproduction

[ub]

a ⇒ 100

120 + H1 data HE

# Comparison to fixed target and LHCb data



Elastic  $J/\psi$  photoproduction

PRL 48 (1982) 73 PRL 52 (1984) 795 arXiv: 1301.7084

- New measurement in the transition region of the fixed target and the previous HERA data.
- Fixed target data: seem to have a steeper slope and lower normalization.
- Fit to H1 data extrapolated to higher  $W_{yp}$  values: describes the LHCb data.

# Comparison to previous fits based on QCD calculations



- LO and NLO fit to previous  $J/\psi$  data and extrapolated to higher  $W_{yp}$ .
- LO fit describes the LHCb data.
- High precision J/ $\psi$  data give important input to gluon density at low x:  $\rightarrow$  with the HERA J/ $\psi$  data one could reach x $\approx 10^{-5}$ , with the LHCb data x $\approx 10^{-6}$ .

γ• 2  $J/\psi$ 

# Comparison to new fits based on QCD calculations



# • New LO and NLO describe the data well.

- NLO gluon pdf compared to recent gluon pdfs from global analyses:  $\rightarrow$  below x $\approx 10^{-3}$  the uncertainties on the pdfs from the global analyses are large, and could be reduced using J/ $\psi$  data.
- S.P. Jones, A.D. Martin, M. Ryskin and T. Teubner, arXiv:1307.7099





Michel Sauter

J/ψ Production at HERA

# Inelastic J/ $\psi$ and $\psi$ ' production at HERA

- Different pQCD models:
  - Color singlet model (CS): cc pair emerges from the hard process with the quantum numbers of the meson.
  - Color octet model (CO): cc pair has different quantuum numbers → soft gluons are radiated.
- Key question:
  - Test QCD and interplay of CS and CO model.
- Quantity to measure "inelasticity":
  - Fraction of incident photon energy carried by the meson:  $(E - n_{\pi})$

$$z = \frac{(E - p_Z)_{\psi}}{(E - p_Z)}$$





- z = 1 for elastic events  $\rightarrow$  main background source to this analysis



- The  $J/\psi$  signal here, include
  - the inelastic  $\psi'$  feed-down via the decay  $\psi' \rightarrow J/\psi X$ . Contribution to cross sections ~15%.
  - the contribution from beauty decays,  $\sim 1.6\%$ .



- Experimental error dominated by statistical error, systematic errors mainly cancel.
- Underlying production mechanism identical for  $\Psi'$  to  $J/\Psi \rightarrow$  expect no dependencies on kinematic variables.
- Expectation for in CS model: 0.25 (horizontal line)
- Reasonably well agreement is observed.

# Double differential cross sections compared to NRQCD prediction

ZEUS



- High precision of the data.
- NRQCD-NLO calculation within the large errors roughly describes the data.
- CO contribution is essential.

# Comparison to k<sub>r</sub>-factorization prediction



- Differential cross sections have been measured for elastic and proton dissociative  $J/\psi$  photoproduction:
  - as a functions of t and  $W_{yn}$  and analyzed in phenomenological fits.
  - The proton dissociative cross section is measured precisely at small |t| for the first time at HERA.
  - The ratio of the elastic to proton dissociative cross section is approximately unity, but slightly falls with  $W_{yp}$ .
  - The elastic  $J/\psi$  data has sensitivity to the gluon density at low x.
- Differential cross sections have been measured for inelastic  $J/\psi$  photoproduction:
  - as functions of  $p_T^2$  and z.
  - Ratios of  $\psi'$  to J/ $\psi$  are measured.
  - The results are compared to NLO CS+CO calculations and to a LO CS model in the  $k_{T}$  factorization framework.

# backup



• Following A. Martin et al.,  $\delta$  can be related to a LO gluon density as  $x^*g(x,\mu^2)=N^*x^{-\lambda}$  via  $\delta \approx 4^*\lambda$ ,  $\mu^2=(Q^2+M_{J/\psi}^2)/4$ ,  $W_{\gamma p} \propto 1 / \sqrt{x}$ .

•  $\lambda$  from this fit  $\lambda_{J/\psi}(\mu^2=2.4 \text{GeV}^2)=0.168\pm0.008$  agrees to previous fits to inclusive DIS data  $\lambda_{J/\psi}(Q^2=2.5 \text{GeV}^2)=0.166\pm0.006$ .

DESY-08-171, arXiv:0904.0929

### Falling ratio of p-diss. over elas cross section predicted?

E. Gotsman, A. Kormilitzin, E. Levin, U. Maor (Tel Aviv Un.), "Survival probability for high mass diffraction", arXiv:hep-ph/0702053

A large rapidity gap (LRG) process is defined as one where no hadrons are produced in a sufficiently large rapidity interval. Diffractive LRG are assumed to be produced by the exchange of a color singlet object with quantum numbers of the vacuum, which we will refer to as the Pomeron. We wish to estimate the probability that a LRG, which occurs in diffractive events, survives rescattering effects which populate the gap with secondary particles coming from the underlying event.



J/ψ Production at HERA

# Combination of $e^+e^-$ and $\mu^+\mu^-$ decay channels

- Done by minimizing a  $\chi^2$  function taking into account:
  - Full statistical error matrix from unfolding procedure
  - Common systematic errors
- Leads to reduced errors.
- Separately done for cross sections as a functions of t and  $W_{m}$ .



# Comparison to previous H1 and ZEUS data



- Large overlap with previous H1 and ZEUS measurements.
- Similar precision in the range  $30 < W_{\gamma p} < 110$  GeV. (Normalization uncertainties of ~5% are not shown).
- Good agreement of HERA measurements.

# Elastic and proton dissociative $J/\psi$ production

• Elastic  $M_{y} = m_{p}$ 











#### Experimental tagging of p-diss .:

- High  $|t| \rightarrow tag$
- Use forward detectors (FTS, Plug, LAr) for low |t| values.

- Event-by-event distinction of the elastic and proton dissociative process is not possible, unfolded on statistical basis.
- Done by solving the matrix equation y = A x with a smoothness constraint.



- $t_{rec} = -p_{T,J/\psi}^2$ ,  $W_{\gamma p \ rec} = s \left(E_{J/\psi} - p_{z,J/\psi}\right) / 2E_e$
- tagged and non-tagged



<u>Response matrix:</u> Calculated from simulation:

 physics model ⊗ detector simulation (based on GEANT)



Output: Elastic and proton dissociative cross sections



# Tagging efficiency and fractions



J/ψ Production at HERA

# Control distributions.



J/ψ Production at HERA