

Charm and Beauty in Photoproduction at HERA

Monica Dobre on behalf of H1 and ZEUS Collaborations

Outline

- HERA Collider
- Motivation
- QCD models
- Tagging methods
- Results

ICNFP 2013, Kolymbari, Greece

M. Dobre

Charm and Beauty in Photoproduction at HERA

Why Measure Heavy Flavour Production?

 Charm and beauty quarks are produced at HERA mainly through the photon-gluon fusion process
→ sensitive to the gluon density in the proton

Interpretation of Heavy Flavour measurements \rightarrow use the pQCD calculations and

constrain the gluon density in the proton

→ take the gluon density from elsewhere and test the consistency of the pQCD calculations

Two kinematic regimes:

- **Photoproduction**: $Q^2 \approx 0 \text{ GeV}^2$
- Deep inelastic scattering: Q² > 1 GeV²

◆ The large mass of the c/b quark provides a hard scale for the pQCD calculations, in addition to the p_T(HF quark) → multi-scale problem

M. Dobre

QCD Models

QCD Scheme: massive fixed order QCD calculation FFNS

- c, b quarks generated dynamically via boson-gluon fusion
- c, b quarks treated as massive
- correct threshold treatment
- valid for small scales: $\mu^2 \approx O(m_c^2)$, $O(m_b^2)$

Monte Carlo Generators: QCD LO + parton showers

PYTHIA: DGLAP evolution + Lund string fragmentation

- HERWIG: DGLAP evolution + cluster fragmentation
- CASCADE: CCFM evolution + Lund string fragmentation

NLO Calculations:

- FMNR: collinear NLO calculation
- MC@NLO: collinear NLO calculation + parton showers and hadronisation
- GMVFNS (only for $c \rightarrow D^*$): uses the KKKS fragmentation for $c \rightarrow D^*$

Heavy Flavour Tagging Methods

$\sigma(b): \sigma(c): \sigma(uds) \approx 1:50:2000$

Full reconstruction Full reconstruction - only charm mesons can be reconstructed at HERA Semileptonic decays 2nd vertex mass tag - uses the semileptonic decay of a heavy quark into an electron or a muon B Lifetime tag p_⊤^{rel} tagging B $-p_{\tau}$ of the muon wrt the direction of the jet is a good discriminant of the b quark against uds and c Lifetime tagging Lepton tag looks for displaced vertices and tracks with large e, µ impact parameters $p_{\rm T}^{\rm rel}$ p_{T}^{rel} tag Secondary vertex mass tagging

– considers the higher mass of the c and b quarks
w.r.t. the uds quarks

Jet

M. Dobre

Beauty Photoproduction near Threshold Using Di-electron Events

Beauty Photoproduction near Threshold Using Di-electron Events

Eur.Phys.J. C72 (2012) 2148

Charm and Beauty in Photoproduction at HERA

Inclusive D* Meson Cross Section in Photoproduction

Eur.Phys.J. C72 (2012) 1995

ICNFP2013

Inclusive D* Meson Cross Section in Photoproduction

D* kinematics reasonably well described

M. Dobre

Charm and Beauty in Photoproduction at HERA

Dijet D* Meson Cross Section in Photoproduction

10

ICNFP2013

M. Dobre

Dijet D* Meson Cross Section in Photoproduction

- Reasonably well described distributions
- The central value of the MC@NLO prediction tends to lie lower than the measured data

M. Dobre

Charm and Beauty in Photoproduction at HERA

Beauty and Charm in Dijet Events with Semi-muonic Decays

M. Dobre

Charm and Beauty in Photoproduction at HERA

Beauty and Charm in Semi-muonic Decays in Dijet Events

Eur.Phys.J. C72 (2012) 2047

Reasonably well described distributions

The central value of the MC@NLO prediction tends to lie lower than the measured data

M. Dobre

Charm and Beauty in Photoproduction at HERA

Beauty and Charm in Semi-muonic Decays in Dijet Events

Eur.Phys.J. C72 (2012) 2047

- Reasonable agreement between the measurement and the predictions
- The excess in the first $p_{\tau}(\mu)$ bin is within 2σ of the experimental and theoretical uncertainty
- Theoretical uncertainties exceed the experimental ones

M. Dobre

Heavy-Quark Jet Photoproduction

Eur.Phys.J. C71 (2011) 1659

Heavy-Quark Jet Photoproduction

Eur.Phys.J. C71 (2011) 1659

Good agreement between NLO QCD predictions and the measurements, both for the charm and for the beauty

M. Dobre

Heavy-Quark Jet Photoproduction

HERA

Eur.Phys.J. C71 (2011) 1659

Several measurements consistent with one another and well described by NLO QCD

Charm Fragmentation Fractions

L = 372 pb⁻¹ Analyzed channels: $\rightarrow D^+ \rightarrow K^- \pi^+ \pi^+$ $D^{*+} \rightarrow K^{-} \pi^{+} \pi^{+}$ $\rightarrow D^0 \rightarrow K \pi$ $D^+ \rightarrow K^+ K^- \pi^+$ $\Lambda_c^+ \rightarrow p \ K^- \pi^+$

arXiv:1306.4862

Is charm fragmentation fraction universal?

M. Dobre

Charm and Beauty in Photoproduction at HERA

Charm Fragmentation Fractions

arXiv:1306.4862

Data from **ep** and e^+e^- are in agreement \rightarrow the fragmentation fractions of charm quarks are **independent of the production process**

Precision of this measurement is comparable with the precision of the combination of all LEP analyses.

M. Dobre

Charm and Beauty in Photoproduction at HERA

ICNFP2013

19

Many methods available for measuring the heavy flavour in photoproduction.
NLO QCD tested to high precision – in general, good agreement between data and theory.

 \star The uncertainties on the measurements are smaller than the theoretical ones.

* The fragmentation fractions of the charm quarks measured at HERA are similar

to the ones measured at LEP

 \rightarrow universality of the fragmentation fractions is confirmed.

Backup

References

- beauty in di-electron events: Eur.Phys.J. C72 (2012) 2148
- charm in the D* golden channel: Eur.Phys.J. C72 (2012) 1995
- charm in dijet events, with a D*-tagged jet: Eur.Phys.J. C72 (2012) 1995
- c and b in events with semi-muonic decays: Eur.Phys.J. C72 (2012) 2047
- c and b in events tagging secondary vertices: Eur.Phys.J. C71 (2011) 1659
- charm fragmentation fractions: arXiv: 1306.4862

Dijet D* Meson Cross Section in Photoproduction

MC@NLO fails to describe the region with resolved photons, whereas reasonable agreement is observed for the description of the direct process.

Non-negligible contributions from higher order QCD radiation or k_T of the partons in the initial state are needed to describe the cross section for the regions away from back-to-back configurations.

M. Dobre

Beauty in photoproduction at low $p_{\tau}(b)$

Heavy Flavour Tagging

- Exploit di-electron correlations:
 - Invariant mass $m_{_{ee}}$
 - Azimuthal angle $\Delta \phi_{ee}$
 - Charge product q(e1)*q(e2)

S

Y

q

Beauty in photoproduction at low $p_{\tau}(b)$

Heavy Flavour Tagging

- Exploit di-electron correlations: •
 - Invariant mass m_{ee}
 - Azimuthal angle $\Delta \phi_{ee}$
 - Charge product q(e1)*q(e2) ٠
- An additional background • region (open electron identification cuts) constrains uds.
- Matrix unfolding of the • differential beauty cross section (similar to 2d template fit).

Y

