Review of H1 results on the hadronic final state at HERA

Lidia Goerlich Institute of Nuclear Physics PAN, Cracow On behalf of the H1 Collaboration

- QCD tests with the hadronic final states
- Azimuthal correlation of forward jets in DIS
- Hadroproduction in DIS
- Summary

HEP 2013 Stockholm 18-24 July 2013

Deep inelastic scattering at HERA

HERA (1992 – 2007): electron (positron) – proton collider at DESY, Hamburg

Centre-of-mass energy up to \sqrt{s} ~ 320 GeV

Total lumi: ~ 0.5 fb⁻¹ per H1 and ZEUS experiment

Standard DIS variables :

- **Q**² |virtuality| of the exchanged boson
- X fraction of proton momentum carried by struck quark in Quark Parton Model
- y = Q² / xs inelasticity, fraction of lepton
 energy transfered in the proton rest frame

Measurements of the hadronic final states

Measurements of the HFS in DIS are complementary to inclusive measurements (structure of the proton, parton distribution functions PDF ...)

- Information on the gluon density in the proton
- Determination of α_s
- Search for effects of parton dynamics beyond the standard DGLAP approach
- Mechanisms of hadroproduction

QCD dynamics at low Bjorken-x

HERA : DIS at low Bjorken-x down to $10^{-5} \rightarrow \text{energy in } \gamma^* \text{p cms is large} (W_{\gamma^* \text{p}} \approx Q^2 / x)$

- long gluon cascades exchanged between the proton and the photon
- pQCD multiparton emissions described only with approximations :

Search at HERA for effects of parton dynamics beyond the standard DGLAP approach

- Strong rise of the proton structure function $F_2(x, Q^2)$ with decreasing x
 - well described by NLO DGLAP over a large range of Q²
 - F₂ measurement too inclusive to discriminate between different QCD evolution schemes
- Look at hadronic final states reflecting kinematics, structure of gluon emissions

Low x phenomenology : Monte Carlo models with different QCD dynamics

Hadronisation parameters tuned to e⁺e⁻ data (ALEPH tune)

Forward jets in DIS

Mueller – Navelet jets in DIS (1990) :

BFKL – more hard partons emitted close to the proton

Study high transverse momentum and high energy jets produced close to the proton (forward region in LAB)

Suppress standard DGLAP evolution in Q² :

 $p_{T,fwdjet}^2 \approx Q^2$

Enhance BFKL evolution in x :

x_{fwdjet} = E_{fwdjet} / E_p >> x_{Bjorken}

H1 experiment, $L = 38.2 \text{ pb}^{-1}$

DIS selection	Jets reconstructed in the Breit frame	η = - In tan(θ/2)
	and boosted to LAB, all cuts in LAB	θ with respect to proton
0.1 < y < 0.75,		beam direction
$5 < Q^2 < 85 \text{ GeV}^2$	p _{T, fwdjet} > 6 GeV, 1.73 < η _{fwdjet} < 2.79	
0.0001 < x < 0.004	$x_{fwdjet} = E_{fwdjet} / E_{p} > 0.035, 0.5 < p_{T,fwdjet}^{2} / Q^{2} < 6.0$	

Measurement of the azimuthal angle difference $\Delta \phi$ between the scattered positron and the forward jet as a function of the rapidity distance Y between them.

At higher Y correspondig to lower x the forward jet is more decorrelated from the scattered positron

 $Y = In(x_{fwdjet} / x)$ rapidity distance between the most forward jet and the scattered positron

$$R = \left(\frac{1}{\sigma^{\rm MC}} \frac{d\sigma^{\rm MC}}{d\Delta\phi}\right) / \left(\frac{1}{\sigma^{\rm data}} \frac{d\sigma^{\rm data}}{d\Delta\phi}\right)$$

Forward jet azimuthal correlations

Different splitting functions used in unintegrated gluon density function (uPDF):

set A0 – only singular terms of the gluon splitting function set 2 – includes also non-singular terms

Predictions of the CCFM model depend on the choice of uPDF

Forward jet azimuthal correlations

Comparison to NLO $(O(\alpha_s^2))$ predictions

EPJ C72 (2012) 1910

NLOJET++ (Nagy & Trocsanyi, 2001)

PDF : **CTEQ6.6**, $\alpha_{s}(M_{z})=0.118$

renormalisation and factorisation scales :

$$\mu_{\rm r} = \mu_{\rm f} = \sqrt{\frac{p_{\rm T, fwdjet}^2 + Q^2}{2}}$$

theoretical uncertainty : factor 2 or $^{1\!\!/_2}$ applied to μ_r and μ_f scales simultaneously

NLO predictions

- shape of ∆ ¢ distributions described, but central value too low
- large scale uncertainty

 (of up to 50%)
 indicates importance of
 higher orders

Dijet production at parton level in DIS at NLO(α_s^2) The underlying dynamics of hadron production in high energy particle interaction is still not fully understood.

Recent H1 results on charged particle spectra:

• proton energy $E_p = 920$ GeV ($\sqrt{s} = 319$ GeV), L= 88.6 pb⁻¹, Eur. Phys. J. C73 (2013) 2406

Charged particle density: test of QCD dynamics at low x

Eur. Phys. J. C73 (2013) 2406

Analysis in the virtual photon – proton (γ^* p) rest frame

Observables : charged particle densities vs. pseudorapidity η^* and transverse momentum p_{τ}^* 1 dn 1 dn $\overline{\mathrm{N}} \, \mathrm{d} \eta^*$ $\overline{\mathrm{N}} \, \mathrm{d} \mathrm{p}_{\mathrm{T}}^*$ $\textbf{p}_{\text{T}}^{*}$ dependence studied in two η^{*} intervals : $0 < \eta^* < 1.5$ central region \rightarrow test of parton shower models **1.5 <** η^* **< 5** current region \rightarrow large sensitivity to the hard scatter target region $\eta^* < 0$ not accessible

 *

р

DIS selection

Charged particles

0.05 < y < 0.6, 5 < Q² < 100 GeV² 0.0001 < x < 0.01

LAB frame :
$$-2 < \eta < 2.5$$

 $p_T > 150 \text{ MeV}$
 $\gamma^* p \text{ frame : } 0 < \eta^* < 5$
 $0 < p_T^* < 10 \text{ GeV}$

 $η^* = - \ln tan(θ^*/2)$

θ* with respect to virtual photon direction

Eur. Phys. J. C73 (2013) 2406

measurements for two p_T^* regions:

- p_T* < 1 GeV
- 1 < p_T* < 10 GeV

First focus on the low and high p_T regions for understanding the influence of hadronisation and parton evolution effects

Charged particle density : sensitivity to QCD dynamics

Strong sensitivity to QCD dynamics at high transverse momentum p_T*

EPJ C73 (2013) 2406

Charged particle density : DGLAP predictions for different PDFs

- All predictions are close to the data
- RAPGAP (LO ME + LL parton shower) with different NLO PDFs predicts similar results

• None of the predictions describe the data

CTEQ6L(LO) is closest to the data

EPJ C73 (2013) 2406

Charged particle density : sensitivity to hadronisation schemes

RAPGAP (DGLAP – based model) + 3 sets of fragmentation parameters

 Data are best described by the ALEPH tune (e⁺e⁻)

EPJ C73 (2013) 2406

15

Transverse momentum distribution

Predictions are sensitive to different parton shower dynamics at high p_T*

 DJANGOH (CDM) provides a reasonable description of the data, other models fail → deviations are strongest in the central region

16

Charged particle p_T^* spectra in bins of Q^2 and x

current region $1.5 < \eta^* < 5$

at high Q² RAPGAP (based on DGLAP) is almost as good as DJANGOH (CDM) at large p_T*

the region most sensitive to the hard scatter

Summary

Azimuthal correlation of forward jets in DIS at HERA

- Cross sections as a function of $\Delta \phi$ and rapidity separation between the forward jet and the scattered positron are best described by the BFKL like model CDM
- The shapes of the ∆ distributions are equally well described by LO MC models with different QCD evolution schemes
- NLO DGLAP predictions are in general below the data, but still in agreement within the large theoretical uncertainties

Measurements of charged particle spectra in DIS at HERA

- Transverse momentum and pseudorapidity distributions in the hadronic centre-of-mass system were measured in *ep* collisions at low Q² for \sqrt{s} = 319 GeV
- The data are compared to QCD models with different parton evolution dynamics (DGLAP, CDM, CCFM) and with different hadronisation schemes
- DGLAP- based models are below the data especially at high p_T^* and low η^*
- CDM provides a reasonable description of the data

backup

Forward and central jet cross sections d σ / d $\Delta \phi$

Subsample of events with <u>forward jet + additional central jet</u>

 $p_{T,cenjet} > 4 \text{ GeV}, -1 < \eta_{cenjet} < 1$

 $\mu_r^2 = \mu_f^2 = (\langle p_T \rangle^2 + Q^2) / 2$

 $<p_T> = 0.5 (p_{T, \text{fwdjet}} + p_{T, \text{cenjet}})$

 $\Delta\eta$ = η_{fwdjet} – η_{cenjet} > 2 (enhance radiation between the forward $\,$ and central jet)

• $\Delta \phi$ still between the forward jet and the scattered positron

forward and central jet

Forward jet production at NLO BFKL

- S. Vera and F. Schwennsen, Phys. Rev. D77 (2008) 014001
- BFKL kernel at NLO accuracy, jet vertex & photon impact factor using LO approximation

 $\begin{array}{r} \mbox{Results} \\ \mbox{for forward jets with ZEUS cuts} \\ 20 < Q^2 < 100 \ GeV^2 \\ 0.05 < y < 0.7 \\ 4 \cdot 10^{-4} < x_{Bj} < 5 \cdot 10^{-3} \\ 0.5 < p_t^2 / Q^2 < 2.0 \end{array}$

 $\Delta \phi = \phi_{el} - \phi_{fwdjet}$ Y = In(x_{jet} / x_{BJ}) – evolution length in BFKL formalism

- The forward jet is more decorrelated from the scattered lepton for larger rapidity difference Y (center of mass energy)
- The azimuthal angle correlations increase when HO corrections are included for a fixed value of Y

Mueller- Navelet jets at LHC – complete NLL BFKL calculations

Colferai, Schwennsen, Szymanowski & Wallon, JHEP 12(2010)026 <u>next-to-leading corrections to the Green's function and to the Mueller-Navelet vertices</u>

LHC \sqrt{S} = 14 TeV, $p_{T,jet1}$ = 35 GeV, $p_{T,jet2}$ = 50 GeV

Azimuthal correlation $\langle \cos 2\phi \rangle = \langle \cos(2 \cdot (\phi_{jet1} - \phi_{jet2} - \pi)) \rangle$

- importance of NLL vertex corrections
- no significant difference between NLL BFKL and NLO DGLAP

H1 measurements \rightarrow the electron-forward jet decorrelation in DIS does not discriminate between different evolution schemes