Recent soft diffraction results from HERA

alls

ZEUS

Alice Valkárová Charles University, Prague

HERA collider experiments

- 27.5 GeV electrons/positrons on 920 GeV protons $\rightarrow Js$ =318 GeV
- data taken in 1992-2007
- HERA I,II: ~ 500 pb⁻¹ per experiment
- H 1 & ZEUS 4π detectors

Historical reminder

- 20 years after the observation of diffractive DIS events at HERA!
- HERA opened new era of diffraction studies

Diffractive kinematics

 $M_y = m_p$ proton stays intact, needs detector setup to detect protons $M_y > m_p$ proton dissociates, contribution should be understood

Experimental methods:

- selecting LRG events
- measuring p in Roman pots (60-220m from Int.Point)

Q²~0 GeV² \rightarrow photoproduction Q²>>0 GeV² \rightarrow deep inelastic scattering (DIS)

HERA: ~10% of events diffractive

$$x_{I\!\!P} = {m \xi} = {Q^2 + M_X^2 \over Q^2 + W^2}$$

momentum fraction of color singlet exchange

fraction of exchange momentum, coupling to $\boldsymbol{\gamma}$

$$t = (p - p')^2 \longrightarrow 4$$

• 4-momentum transfer squared

Factorisation properties of diffraction

QCD factorisation

(rigorously proven for DDIS by Collins et al.)

Regge factorisation

(conjecture, e.g. Resolved Pomeron Model by Ingelman&Schlein)

$$\sigma^{D}(\gamma^{*}p \to Xp) = \sum_{parton_{i}} f_{i}^{D}(x,Q^{2},x_{IP},t) \cdot \sigma^{\gamma^{*}i}(x,Q^{2})$$

 f_i^D - DPDFs - obey DGLAP, universal for diff. ep DIS (inclusive, dijet..)

 $\sigma^{\gamma^{*i}}$ - hard scattering cross section (same as in non-diffractive DIS)

$$f_i^D(x,Q^2,x_{IP},t) = f_{IP/P}(x_{IP},t) \cdot f_i^{IP}(\beta = x/x_{IP},Q^2)$$

pomeron flux factor

pomeron PDF

Modelling of diffraction

Diffractive reduced cross section

- select diffractive events
- correct for detector effects
- derive cross sections -> F₂^D

$$\frac{d^4\sigma(ep \to eXp)}{d\beta dQ^2 dx_P dt} = \frac{4\pi\alpha_{em}^2}{\beta Q^4} (1 - y + \frac{y^2}{2}) \sigma_R^{D(4)}(\beta, Q^2, x_P, t)$$

 $\sigma_R^{D(4)} \rightarrow \underline{\text{diffractive reduced cross section}}_{R} \sigma_R^{D(4)} \sigma_R^{D(4)} \approx F_2^{D(4)}$

at low and medium y

$$\sigma_{R}^{D(4)} = F_{2}^{D(4)} - \frac{y^{2}}{2(1 - y - \frac{y^{2}}{2})} F_{L}^{D(4)} \qquad \sigma_{R}^{D(4)} = F_{2}^{D(4)} \text{ if }$$

$$F_{L}^{D(4)} = 0$$

Integrate over *t* when proton is not tagged $\rightarrow \sigma_R^{D(3)}(\beta, Q^2, x_P)$

EDS Saariselka 2013

Full H1 LRG data sample

DESY - 12 - 041

Data Set	Q^2 range	Proton Energy	Luminosity	
	(GeV^2)	E_p (GeV)	(pb^{-1})	
New data samples				
1999 MB	$3 < Q^2 < 25$	920	3.5	
1999-2000	$10 < Q^2 < 105$	920	34.3	
2004-2007	$10 < Q^2 < 105$	920	336.6	
Previously published data samples				
1997 MB	$3 < Q^2 < 13.5$	820	2.0	
1997	$13.5 < Q^2 < 105$	820	10.6	
1999-2000	$133 < Q^2 < 1600$	920	61.6	

[H1 Coll. EPJC28 (2006) 715]

8

Combined H1 LRG cross section

Published in 1997 and new cross sections agree well

Large reduction of statistical errors

Typical precisions for $Q^2 > 12 \text{ GeV}^2$

Combined H1 LRG & FPS

Eur. Phys. J. C72 (2012) 2074

The ratio LRG/FPS :

$$\frac{\sigma (M_Y < 1.6 \,\text{GeV})}{\sigma (Y = p)} = \frac{1.203 \pm 0.019 (\text{exp.}) \pm 0.087 (\text{norm.})}{(1.6\%) (7.2\%)}$$

FPS cross sections are multiplied by factor 1.2 to take into account the dissociation admixture in LRG sample

Agreement with previous results, no Q^2 or β dependence of differences observed !

Extraction of the pomeron trajectory

Regge fit to LRG cross sections:

Experimental summary for H1 F₂^D

12

H1 & ZEUS LRG data

H1 LRG	H1 Collab., Eur. Phys. J. C48 (2006) 715 H1 Collab., Eur. Phys. J. C72 (2012) 2074	
ZEUS LRG	ZEUS Collab., Nucl. Phys. B816 (2009) 1	
H1 dat	a My < 1.6 GeV²	
ZEUS data (by factor 0.92	rescaled to My < 1.6 GeV ²	
ZEUS data tend to be higher than H1, normalisation difference ~ 10%		
Compariso effects	n is sensitive to systematic	

H1 & ZEUS, comparison with models

Normalization difference of ~ 10% between H1 nad ZEUS is within normalization uncertainties of each experiment

- low Q² better description by dipole model, higher twist contributions?
- high Q² better description by H1 fit B DPDF

Data available for comparison with models

HERA LRG data combination.....

14

HERA combined $\sigma_r^{D(3)}$ proton spectrometers

H1 FPS

H1 Collab., Eur. Phys. J. C71 (2011) 1578 H1 Collab., Eur. Phys. J. C48 (2006) 749

ZEUS LPS ZEUS Collab., Nucl. Phys. B816 (2009) 1 ZEUS Collab., Eur. Phys. J. C38 (2004) 43

Kinematic range Q² = 2.5 - 200 GeV² β = 0.0018 - 0.816 x_{IP} = 0.00035 - 0.09 |†| = 0.09 - 0.55

Conclusions

- These data provide new constraints to QCD models and support proton vertex factorisation hypothesis
- ZEUS final results published in 2009 → Nucl. Phys. B 816, (2009),1
- HERA data available for comparison with models

Comparison between methods - H1

H1

10

EPJ C71 (2011) 1578

1.3

0.7

Are "rapidity gap" and "forward proton" methods compatible?

H1, LRG/FPS = 1.18 ± 0.03 (stat) ± 0.06 (uncor.syst.) ± 0.10 (norm)

Precise knowledge and corrections for proton dissociation backgroundkey point in H1- ZEUS data comparison

EDS Saariselka 2013

17

10.9.2013

ß

Comparison between methods - ZEUS

- LRG selection contains about 20% events of proton diss.
- no significant dependence on any variable
- well controlled, precise measurements

18

EDS Saariselka 2013

10.9.2013

18/