

on behalf of H1 and ZEUS Collaborations

HERA collider experiments

Historical reminder

- 20 years after the observation of diffractive DIS events at HERA!
- First publications describing hard diffraction in 1995

Figure 3: Average observed transverse thrust as function of event E_T . Data (points) and expectation for azimuthally isotropic events (line) with the same average multiplicity as the data points for a given E_T .

Observation of Hard Processes in Rapidity Gap Events in gamma-p Interactions at HERA, Nucl. Phys. B435 (1995) 3

Observation of Hard Scattering in Photoproduction Events with a Large Rapidity Gap at HERA, PL B 346 (1995) 399

Diffractive kinematics

 $M_y = m_p$ proton stays intact, needs detector setup to detect protons $M_y > m_p$ proton dissociates, contribution should be understood

Experimental methods:

- selecting LRG events
- measuring p in Roman pots (60-220m from IP)

Q²~O GeV² \rightarrow photoproduction Q²>>O GeV² \rightarrow deep inelastic scattering (DIS)

$$x_{I\!\!P} = m{\xi} = rac{Q^2 + M_X^2}{Q^2 + W^2}$$

momentum fraction of color singlet exchange

$$eta = rac{Q^2}{Q^2 + M_X^2} = x_{q/I\!\!P} = rac{x}{x_{I\!\!P}}$$
 -

fraction of exchange momentum, coupling to $\boldsymbol{\gamma}$

$$t = (p - p')^2 \longrightarrow 4$$
-momentum transfer squared

Factorisation properties of diffraction

DPDFs in DIS

DPDFs obtained by H1 and ZEUS from inclusive, dijet (and D* measurements....) DPDFs used in HERA analyses - H1 fit B, H1 fit Jets, ZEUS fit SJ Main differences are in gluonic part.

Dijet DIS production in FPS spectrometer

Eur. Phys. J. C72 (2012) 1970

Dijet DIS production in FPS spectrometer

Regge factorization

 $f_i^D(x,Q^2,x_{IP},t) = f_{IP/P}(x_{IP},t) \cdot f_i^{IP}(\beta = x/x_{IP},Q^2)$

 $f_{IP/p}(x_{IP},t) = \frac{e^{Bt}}{x_{IP}^{2\alpha(t)-1}}$

 $B = 5.89 \pm 0.50 \text{ GeV}^{-2}$

B-slope consistent with inclusive measurements

EDS 2013, Saariselka

ep and hadron-hadron collisions

- In diffractive DIS factorization experimentally confirmed by H1 and ZEUS (dijets in DIS, D* in DIS...).
 - Exporting DPDFs from HERA to Tevatron does not work

Photoproduction, γ^*p , $Q^2 \rightarrow 0$

Dijets in photoproduction-history

New analysis -dijets in PH with a leading proton

- 2006/07 e⁺p H1 data, integrated lumi ~ 30pb $^{-1}$
- Proton measured in Very Forward Proton Spectrometer -> My=Mp
- Untagged photoproduction (events without visible electron)
- 2 stations 218 and 222m from the interaction point
- High track reconstruction efficiency ~96%, low background, <1%

Phase-space definition $Q^2 < 2 \text{ GeV}^2$ 0.2 < y < 0.8 k_T jet algorithm: $E_T^{\text{jet1}(2)} > 5.5(4) \text{ GeV}$ $-1 < \eta^{\text{jet1},2} < 2.5$ Diffractive: $0.010 < x_{IP} < 0.024$ $|t| < 0.6 \text{ GeV}^2$ $M_Y = M_p$

~ 4800 events

12

Differential cross sections - x_v

No obvious dependence of suppression on \mathbf{x}_{γ}

Large theoretical uncertainties connected with the DPDF uncertainty and scale variation.

13

MC RAPGAP describes the shape quite well but it is too low

The NLO QCD prediction for last z_{IP} bin should be taken with caution - DPDF was not evaluated for $z_{IP} > 0.8$, here only extrapolation! Dependence on E_T cannot be excluded, within large theor. uncertainties

Conclusions

- Differential cross section of dijet production in DIS and photoproduction for events with leading proton in forward spectrometers (FPS and VFPS) measured.
- DIS dijets data agree with NLO predictions previous H1 results and QCD factorisation confirmed
- Photoproduction dijets data suppressed by factor 0.67 in comparison to NLO calculations, previous H1 results confirmed but large uncertainties
 - -> possible way out -> measure the double ratio data/NLO for DIS and photoproduction, many uncertainties will cancel