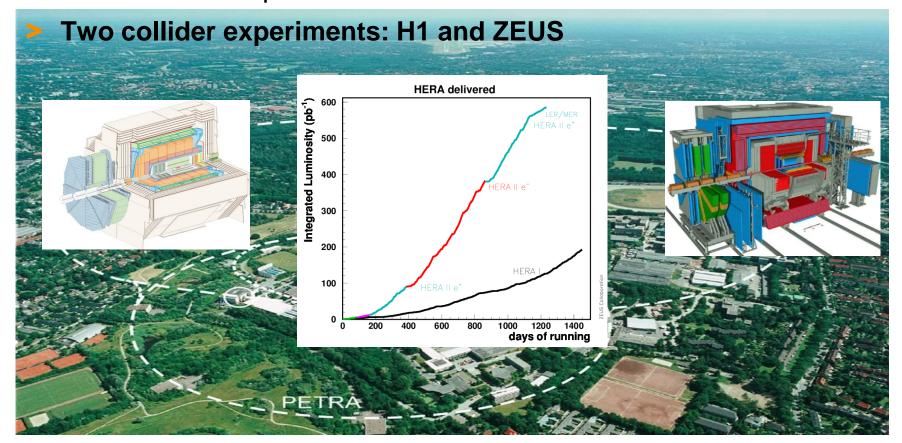
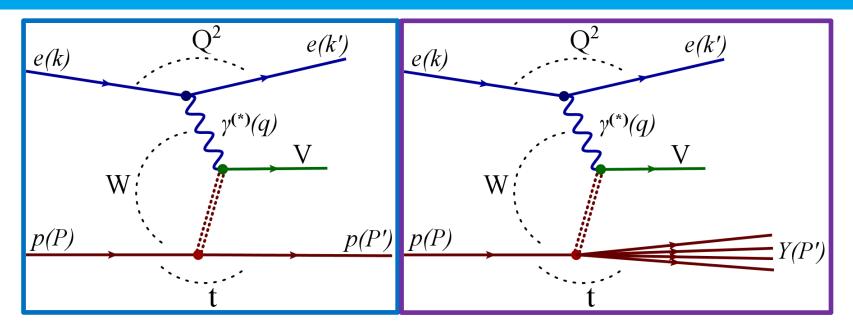
Exclusive Production at HERA

The 15th conference on Elastic and Diffractive scattering

EDS Blois 2013 - Saariselkä 9 - 13 September 2013


Janusz Tomasz Malka
on behalf of the H1 and ZEUS Collaborations

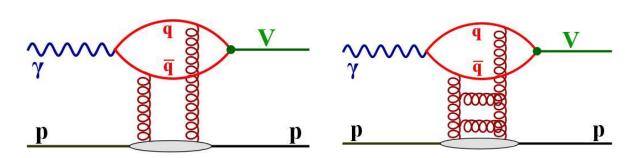
HERA ep collider (1992 – 2007)

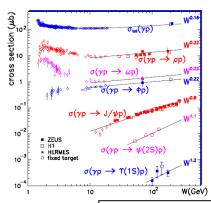

- The world's only electron/positron-proton collider at DESY, Hamburg
- $E_e = 27.6 \text{ GeV}, E_p = 920 \text{ GeV} (820, 460, 575 \text{ GeV})$

> total luminosity ~ 0.5 fb⁻¹per experiment

Exclusive diffractive processes

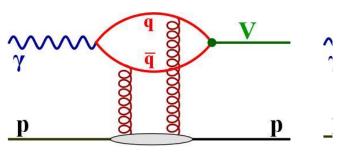
- > Diffraction no quantum numbers are exchanged in the interaction btw γ and p \rightarrow no colour flux \rightarrow large rapidity gap
- V Vector Meson $(\rho, \rho', \rho'', \omega, \phi, J/\psi, \psi', \Upsilon)$
- Q^2 photon virtuality $Q^2=-q^2=-(k-k')^2$


 $(Q^2 \approx 0 - photoproduction)$, $Q^2 > 0 - electroproduction)$

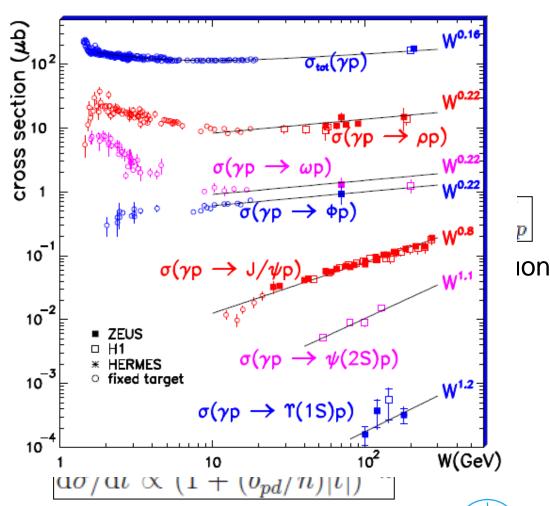

- W c.m. energy of γp system W=(q+p)²
- t $(4\text{-mom. transfer})^2$ at p-vertex $t = (P P')^2$
- > The proton can stay intact p(P') or dissociate Y(P')

Vector Meson production

> In presence of a hard scale (M_{VM}, Q^2, t) calculations in pQCD are possible

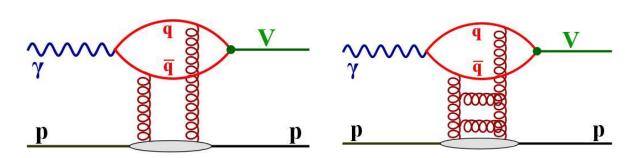

- > The cross section dependence on W can be parameterised as $|\sigma \propto W_{\gamma p}^{\delta}$
- > the rapid rise of cross section with W γ p, can be explain by increasing gluon density with decreasing of fractional momentum x \propto 1/W $_{\gamma p}^2$
- > The t-dependence of elastic cross section carries information about the transverse size of the interaction region $d\sigma/dt \propto e^{-b_{el}|t|}$
- > p-diss cross section becomes dominant for | t | > 1 GeV²

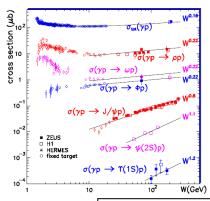
$$\mathrm{d}\sigma/\mathrm{d}t \propto (1 + (b_{pd}/n)|t|)^{-n}$$



Vector Meson production

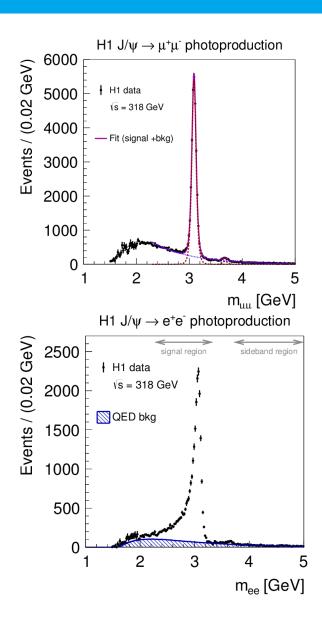
> In presence of a hard scale (M_{VM}, Q^2, t) calculations in pQCD are possible

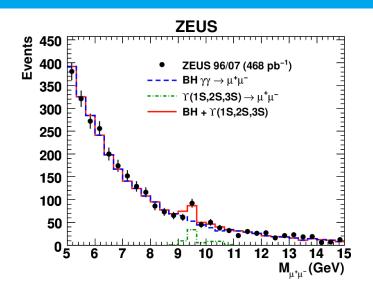


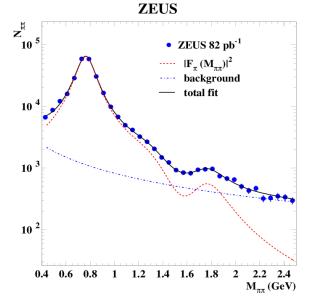

- The cross section dependent
- the rapid rise of cross section density with decreasing of frame
- The t-dependence of elastic transverse size of the interact
- p-diss cross section become

Vector Meson production

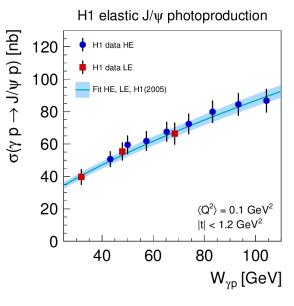
> In presence of a hard scale (M_{VM}, Q^2, t) calculations in pQCD are possible

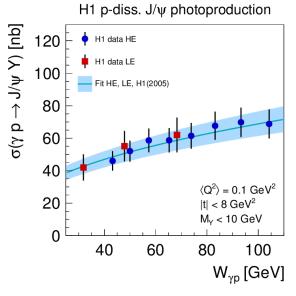



- > The cross section dependence on W can be parameterised as $|\sigma \propto W_{\gamma p}^{\delta}$
- > the rapid rise of cross section with W γ p, can be explain by increasing gluon density with decreasing of fractional momentum x \propto 1/W $_{\gamma p}^2$
- > The t-dependence of elastic cross section carries information about the transverse size of the interaction region $d\sigma/dt \propto e^{-b_{el}|t|}$
- > p-diss cross section becomes dominant for | t | > 1 GeV²


$$\mathrm{d}\sigma/\mathrm{d}t \propto (1 + (b_{pd}/n)|t|)^{-n}$$

Vector Mesons mass distributions





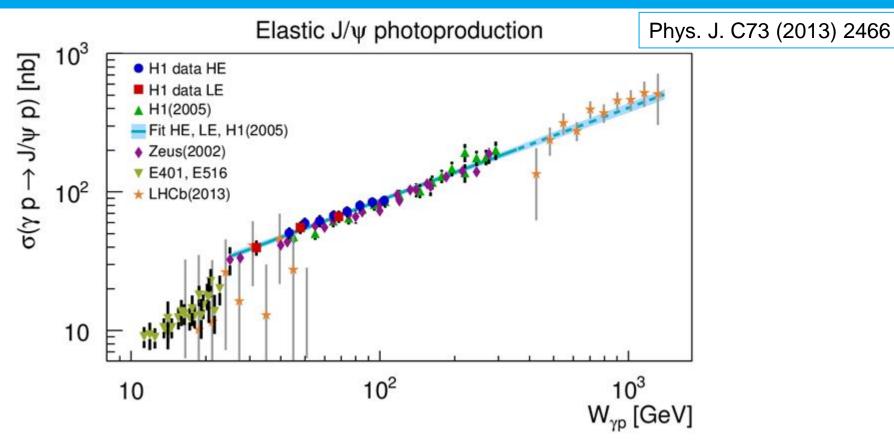
Elastic and p-diss cross sections as a function of Wγp

Phys. J. C73 (2013) 2466

- Fit model:
 - Parametrisation (for elastic and p-diss.):

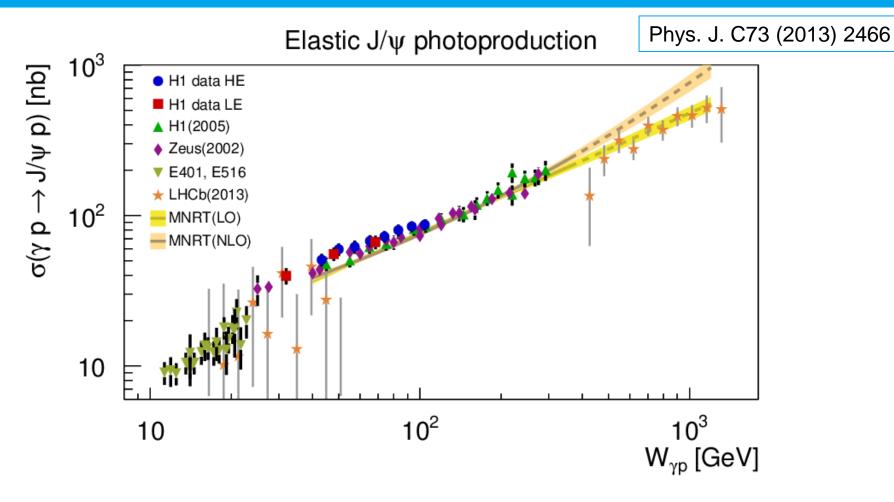
$$\sigma = N (W_{vp} / W_0)^{\delta}$$
 with $W_0 = 90$ GeV

- Simultaneous fit of elastic and p-diss cross sections:
 - including correlations, including previous H1 hep-ex/0510016
- > Results:

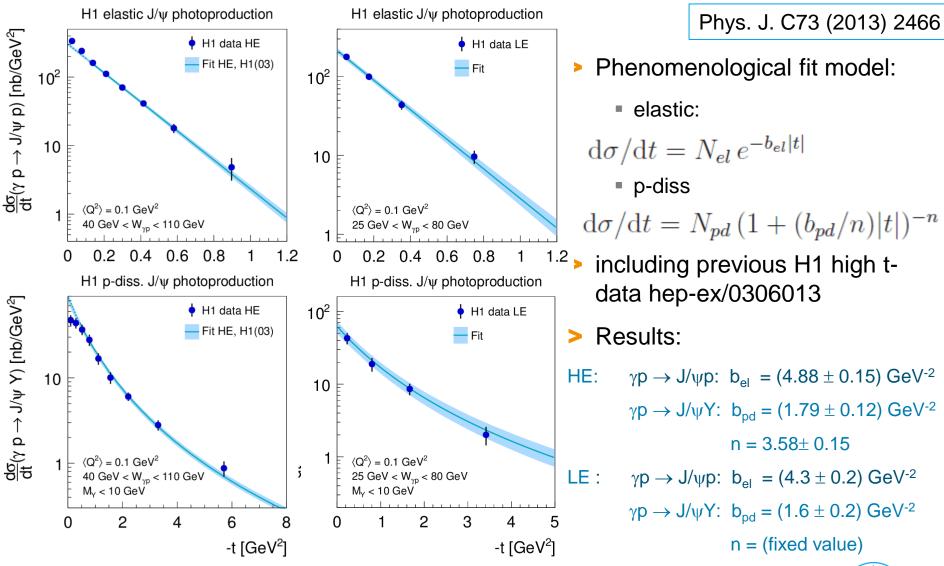

$$\gamma p \rightarrow J/\psi p$$
: $\delta_{el} = 0.67 \pm 0.03$
 $\gamma p \rightarrow J/\psi Y$: $\delta_{pd} = 0.42 \pm 0.05$

$$\delta_{\rm el} = \delta_{\rm pd} - \delta_{\rm el}$$
: -0.25 ± 0.06

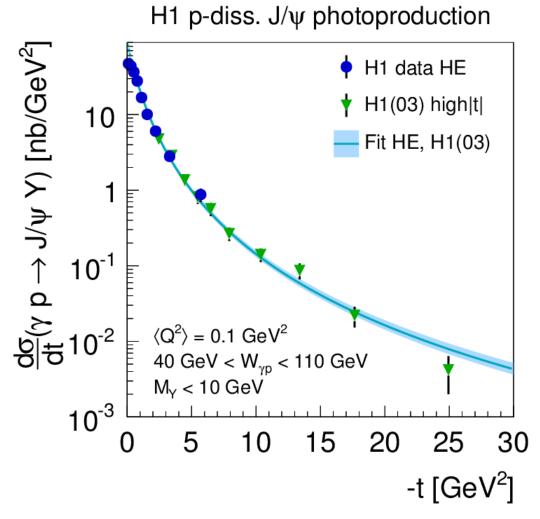
A dependence of cross section ratio as a function of W_{vp} is observed


Comparison to other experiments

- H1 measurement in the transition region from fixed target to previous HERA data
- > Good agreement with previous HERA measurements
- > Fixed target data: steeper slope, lower normalization
- Fit to H1 data extrapolated to higher Wγp describes the LHCb data


Comparison to fits based on QCD calculations

- > LO and NLO fit to previous J/ ψ data and extrapolated to higher W γ p.
- LO fit describes the LHCb data.

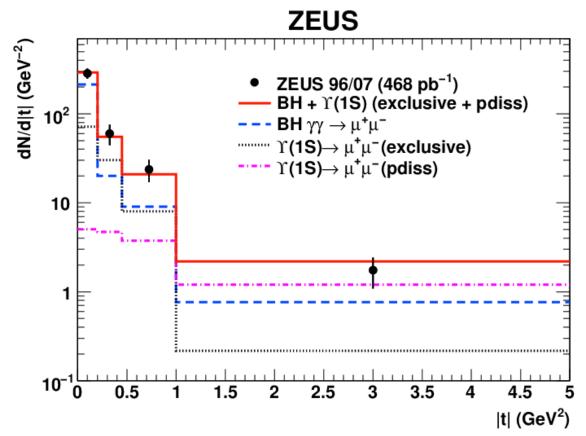


Elastic and p-diss cross sections as a function of t

p-diss cross sections as a function of t

Phys. J. C73 (2013) 2466

- The new data extend the reach to small values of |t|
- Good agreement in overlap region


Elastic Y(1S) in photoproduction: b-slope

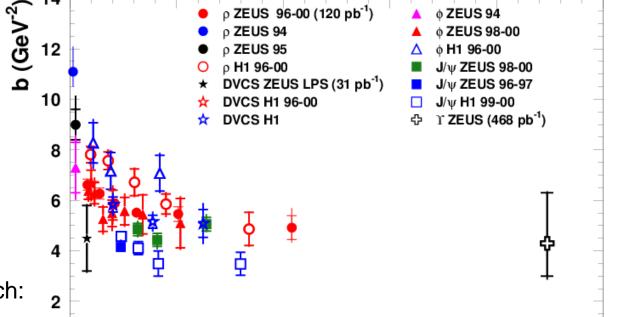
60 < W < 220 GeV</p>

Phys.Lett.B 708 (2012) 14

- > Binned Poissonian
 maximum log-likelihood
 fit → elastic b, N(1S)
- N(1S)= 41 ±10 events(44% of all events in the mass window)
- > The first measurement of b-slop:

$$b = 4.3^{+2.0}_{-1.2}^{+0.5}_{-0.6} \text{ GeV}^{-2}$$

consisted with predictions based on pQCD models (b= 3.68 GeV⁻²)


Cox, Forshaw, Sandapen, JHEP 0906 (2009) 034

VM production and DVCS: b(Q²+M²_{VM})

- Analysis doubles the explored range
- In agreement with an asymptotic behaviour of Q² + M²_{VM}
- In optical model approach:

$$b\approx (R_p^2 + R_{VM}^2)/4$$

60

size of scattered VM getting smaller with Q² + M²_{VM}

 $Q^2+M_{VM}^2(GeV^2)$

100

Phys.Lett.B 708 (2012) 14

20

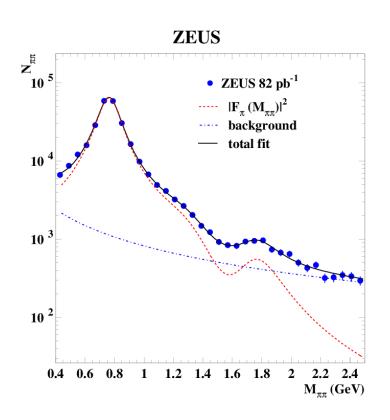
Eur.Phys.J.C72 (2012) 1869

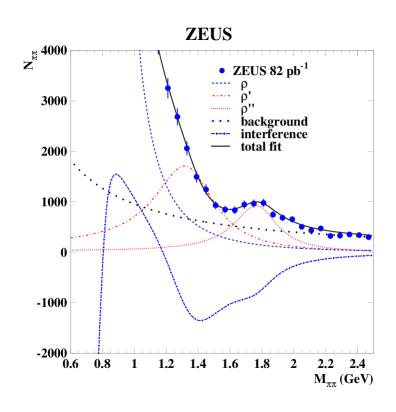
> The two-pion invariant-mass distribution is interpreted in terms of the pion electromagnetic form factor: $dN(M_{\pi\pi})$

$$\frac{dN(M_{\pi\pi})}{dM_{\pi\pi}} \propto |F_{\pi}(M_{\pi\pi})|^2$$

Kuhn-Santamaria parameterization has been used:

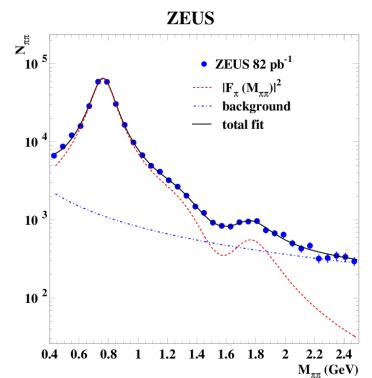
$$F_{\pi}(M_{\pi\pi}) = \frac{BW_{\rho}(M_{\pi\pi}) + \beta BW_{\rho'}(M_{\pi\pi}) + \gamma BW_{\rho''}(M_{\pi\pi})}{1 + \beta + \gamma}$$


in mass range < 2.5 GeV incudes contributions from:

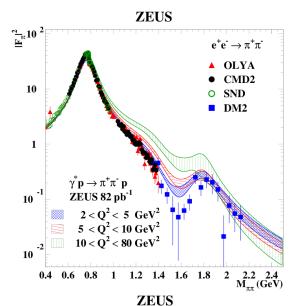

• $\rho(770)$, $\rho'(1450)$ - radially excited 2S state, $\rho''(1700)$ - orbitally excited 2D state β and γ are relative amplitudes, BW_{VM} – Breit-Wigner distribution:

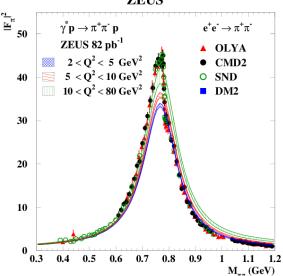
$$BW_V(M_{\pi\pi}) = \frac{M_V^2}{M_V^2 - M_{\pi\pi}^2 - iM_V\Gamma_V(M_{\pi\pi})}$$

Eur.Phys.J.C72 (2012) 1869



Negative interference between all resonances results in the ρ' signal appearing as a shoulder


$$F_{\pi}(M_{\pi\pi}) = \frac{BW_{\rho}(M_{\pi\pi}) + \beta BW_{\rho'}(M_{\pi\pi}) + \gamma BW_{\rho''}(M_{\pi\pi})}{1 + \beta + \gamma}$$



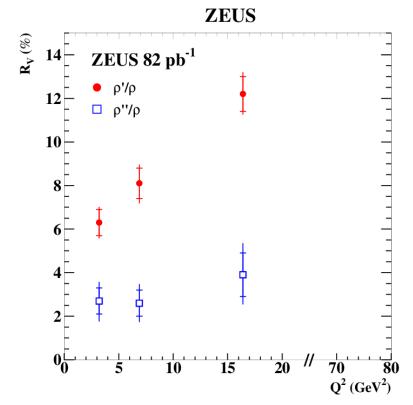
Parameter	ZEUS	PDG
$M_{\rho} \; (MeV)$	$771 \pm 2^{+2}_{-1}$	775.49 ± 0.34
$\Gamma_{\rho} \; ({\rm MeV})$	$155 \pm 5 \pm 2$	149.1 ± 0.8
β	$-0.27 \pm 0.02 \pm 0.02$	
$M_{\rho'} \text{ (MeV)}$	$1350 \pm 20^{+20}_{-30}$	1465 ± 25
$\Gamma_{\rho'} \; (\mathrm{MeV})$	$460 \pm 30^{+40}_{-45}$	400±60
γ	$0.10 \pm 0.02^{+0.02}_{-0.01}$	
$M_{\rho''}$ (MeV)	$1780 \pm 20^{+15}_{-20}$	1720 ± 20
$\Gamma_{\rho''}$ (MeV)	$310 \pm 30^{+25}_{-35}$	250 ± 100

- Masses and widths consistent with expectations
- Relative amplitudes found to be real

Eur.Phys.J.C72 (2012) 1869

- features of pion form factor in ep are similar to e+e-:
 - the prominent ρ peak
 - a shoulder around the ρ' peak
 - a dip followed by enhancement in the ρ" region
- some differences in the interference region
- in the ρ peak, the pion form factor is highest at highest Q²

$Q^2(\mathrm{GeV}^2)$	2-5	5-10	10-80
β	$-0.249 \pm 0.008^{+0.005}_{-0.003}$	$-0.282 \pm 0.008^{+0.005}_{-0.008}$	$-0.35 \pm 0.02 \pm 0.01$
γ	$0.100 \pm 0.009 \pm 0.003$	$0.098 \pm 0.012^{+0.005}_{-0.003}$	$0.118 \pm 0.022^{+0.008}_{-0.006}$


- > the absolute value of β increases with Q^2
- $> \gamma$ remains Q² independent within the uncertainties

- > The cross-section ratio: $R_V = \frac{\sigma(V) \cdot Br(V \to \pi\pi)}{\sigma(\rho)}$ $\sigma(V)$ - cross section for vector-meson production
- Eur.Phys.J.C72 (2012) 1869

 $Br(V \to \pi\pi)$ - branching ratio of the vector meson $V(\rho', \rho'')$ into $\pi\pi$

- > ρ'/ρ ratio increases with Q²
 - predicted by pQCD
 - suppression of ρ' is connected to a node
 effect at low Q²
- ρ" behavior differs from that of ρ
 - due to large uncertainties no conclusion

Conclusions

J/ψ:

- > The proton dissociative cross section is measured precisely at small |t| for the first time at HERA
- Data from the HERA low energy runs add information at low W_{vp}.
- Data from fixed target experiments differ in slope
- \gt The ratio of the elastic to proton dissociative cross section slightly depends on W_{yp}

Υ:

- > For the first time the b-slope for Y is determined
- Asymptotic behavior of b-slope vs (Q²+M_{VM}²) is observed

ππ:

- \rightarrow The $\pi\pi$ mass distribution is well described by the pion electromagnetic form factor
- The ratio ρ'/ρ rises strongly with Q²
- > The Q² dependence of the pion form-factor is observed

