Jet physics at HERA and extraction of $\alpha {\rm s}$

Inna Makarenko

on behalf of the H1 and ZEUS Collaborations

New Trends in HEP *Alushta*, Crimea, Ukraine September 23 - 29, 2013

HERA collider. H1 and ZEUS experiments.

HERA is a unique e^{\pm} collider:

- located at Hamburg, Germany;
- operated during 1992-2007;
- $\sqrt{s} = 318 \text{ GeV}$

H1 and ZEUS collider experiments:

- general purpose detectors;
- 4π geometry;
- collected ~0.5 fb⁻¹ of integrated luminosity by each experiment

Jet physics at HERA

Jet physics at HERA

- f: parton density, determined from experiment
- $\hat{\sigma}$: subprocess cross section, calculable in pQCD

Jet cross sections at HERA provide a testing ground for pQCD:

- precise extraction of $\alpha_s(M_Z)$ and test of the running of α_s ;
- constraints on the proton PDFs

Jets in NC DIS at HERA

• Jet production in neutral current deep inelastic ep scattering at $\mathcal{O}(\alpha_s)$ in the Breit frame:

<u>Jet searched using the k_{\perp} cluster algorithm in the Breit frame</u>

Measurements of jet production in NC DIS at HERA provide a clean hadron-induced reaction

Jets in PHP at HERA

• Jet production in photoproduction at $\mathcal{O}(\alpha_s)$:

<u>Jets were identified using the k⊥, anti-k⊥ or SIScone jet algorithms in</u> <u>the laboratory frame</u>

Photoproduction is the main source of jets at HERA

Single-differential inclusive-jet photoproduction cross sections as functions of $E_T{}^{jet}$ and η^{jet}

Nucl. Phys. B 864 (2012) 1-37

6

Reasonable description of data in shape and normalisation by NLO QCD

$\begin{array}{l} \text{Extraction of } \alpha_{\rm s}(M_Z) \, . \\ \text{Test of energy-scale dependence of } \alpha_{\rm s}. \end{array}$

• Values of $\alpha_s(M_Z)$ were determined from the measured cross sections to quantify the performance of the jet algorithms:

$$\alpha_s(M_Z)|_{k_T} = 0.1206 {}^{+0.0023}_{-0.0022} \text{ (exp.)} {}^{+0.0042}_{-0.0035} \text{ (th.)}$$

• $\alpha_s(M_Z)$ from inclusive-jet cross sections in PHP with different jet algorithms are consistent with each other and have similar precision

•Extracting
$$\alpha_s$$
 from the measured $\frac{d\sigma}{dE_T^{jet}}$ at different E_T^{jet} values

•The results are in good agreement with the predicted running of α_s over a wide range in E_T^{jet} from a single experiment

Normalised multijet-jet cross sections at high-Q² NC DIS

- Simultaneous measurement of normalized* inclusive jet, dijet and trijet cross sections
- * Normalization wr.t. inclusive NC DIS:
 - ✓ cancellation of normalisation unc.
 - ✓ partly cancellation of other exp. unc.

Correction of detector effects using regularised unfolding

- Detector effects
 - \succ Acceptance and efficiency
 - > Migrations due to limited resolution
- Aim
 - > Cross section on hadron level
 - Direct detector response matrix inversion often not possible
 - \rightarrow Using TUnfold

NC DIS phase space: $150 < Q^2 < 15000 \text{ GeV}^2$ 0.2 < y < 0.7

Jet acceptance: -1.0 < η^{lab} < 2.5

Inclusive Jet: count every single jet with transverse momentum $7 < p_T^{jet} < 50 \text{ GeV}$

8

Dijet and Trijet: average of two/three leading jets $< p_T > = \frac{p_T^1 + p_T^2}{2}$ $5 < p_T^{jet} < 50 \text{ GeV}$ $M_{12} > 16 \text{ GeV}$ $7 < < p_T^{jet} > < 50 \text{ GeV}$

NC DIS, inclusive jet, dijet and trijet are unfolded simultaneously: stat. correlations are considered

Normalised multijet-jet cross sections at high-Q² NC DIS

H1prelim-12-031

NLO predictions

Using programs nlojet++, fastNLO and QCDNUM

- pPDFs: CT10
- $\overline{\alpha}_{s}(M_{Z}) = 0.118$
- Renormalisation and factorisation

scales: $\mu_r = \mu_F = \frac{\sqrt{p_T^2 + Q^2}}{2}$

 $< p_T >$ instead of p_T for dijet and trijet

- Calculations corrected for hadronisation
 effects
- →Dominant source of the theoretical uncertainty is due to terms beyond NLO

Jet energy scale 1% → 3 - 7% effect on cross sections

NLO QCD calculations provide a good description of the measurements
 All three normalised jet measurements can be used together in a fit since the correlation matrix is known

Extraction of $\alpha_s(M_Z)$

• α_s fit to individual measurements

H1prelim-12-031

Normalised inclusive jet

 $\alpha_{s}(M_{Z}) = 0.1197 \pm 0.0008 \text{ (exp)} \pm 0.0014 \text{ (PDF)} \pm 0.0012 \text{ (had)} \pm 0.0054 \text{ (theo)}$ $\chi^{2} / \text{ndf} = 28.7/23 = 1.25$

Normalised dijet

 $\alpha_{s}(M_{Z}) = 0.1142 \pm 0.0010 \text{ (exp)} \pm 0.0017 \text{ (PDF)} \pm 0.0009 \text{ (had)} \pm 0.0048 \text{ (theo)}$ $\chi^{2} / \text{ndf} = 27.0/23 = 1.18$

Normalised trijet

 $\alpha_{\rm s}({\rm M_Z})$ = 0.1185 ± 0.0018 (exp) ± 0.0013 (PDF) ± 0.0016 (had) ± 0.0043 (theo) χ^2 / ndf = 12.0/16 = 0.75

Results

- High experimental precision
- Reasonable χ2/ndf for each fit

Tension between inclusive jet and dijet (observed also in previous H1 and ZEUS analyses)

• α_s simultaneous fit to normalised inclusive jet, dijet and trijet cross sections

Normalized Multijet (k < 1.3)

 α_{s} (M_Z) = 0.1163 ± 0.0011(exp) ± 0.0014 (PDF) ± 0.0008 (had) ± 0.0040 (theo)

 χ^2 / ndf = 53.3 / 41 = 1.30

✓ Value consistent with world average

$\alpha_{s}(M_{Z})$ from inclusive DIS & inclusive jet data. Comparison of $\alpha_{s}(M_{Z})$ values.

H1prelim-11-034, ZEUS-prel-11-001

Combined fit of PDF and αs(MZ) to inclusive DIS data and inclusive jet data •HERAPDF1.5f: incl. DIS only •HERAPDF1.6: incl. DIS and jet data

Jet data is capable of reducing correlation between α_s and gluon PDF

$$\alpha_{s} (M_{Z}) = 0.1202 \pm 0.0019 (exp/model/param/had.) \pm \frac{0.0045}{0.0036} (scale)$$

✓ Scale uncertainty from variation of renormalization and factorization scale

• Jet physics at HERA continues providing precision measurements towards understanding QCD and improving the determination of the pPDFs

 \rightarrow The measured jet cross sections are well described by the NLO predictions in the whole measured range

 \rightarrow Precise new jet measurements will help to constrain further the proton PDFs

 \rightarrow Precise values of $\alpha_s(M_Z)$ extracted from jet production in different regimes \rightarrow Precise determination of the running of α_s over a wide range of the scale

 $\begin{array}{l} \text{HERA jet cross sections} \\ \rightarrow \text{High experimental} \\ \text{sensitivity to } \alpha_{s}(M_{Z}) \\ \text{Complementary methods} \\ \text{and processes} \\ \rightarrow \text{Consistent results} \\ \text{Theory uncertainty from} \\ \text{missing higher order} \\ \text{dominates} \end{array}$

Study of the influence of non-perturbative effects and γ PDF at high η^{jet} Nucl. Phys. B 864 (2012) 1-37

- Non-perturbative contribution increases the jet rate in the regions where discrepancies between data and NLO are observed
- Disagreement between data and NLO decreases when increasing E_T^{jet} threshold to 21 GeV
- CJK (AFG04) gives higher (lower) prediction than GRV-HO at high η^{jet}

Jet physics at HERA

Inclusive-jet cross sections in PHP for k_{\perp} , anti- k_{\perp} and SIScone

- Good description of data in shape and normalisation by NLO QCD
- Bigger hadronisation corrections for SIScone than anti- $k\perp$ (similar to $k\perp$)
- anti-k \perp has same shape and is 6% smaller than k \perp
- SIScone has slightly different shape than $k\perp$ and anti- $k\perp$

Correlation matrix for all four measurements

H1prelim-12-031

0.8

0.6

0.4

0.2

0

-0.2

-0.4

4 7 101316

Trijet Bin

Correlation

rile

12

Correlation matrix is employed for correct error propagation for norm. cross sections