

p

Beauty and charm production at HERA

Outline

- Heavy flavour physics at HERA
- Experimental techniques
- Recent beauty and charm results

Vladyslav Libov (DESY) on behalf of H1 and ZEUS collaborations

NEW TRENDS IN HIGH-ENERGY PHYSICS Alushta, Ukraine, 23 – 29 September 2013

HERA collider

- Protons 920 GeV
- Electrons 27.6 GeV $\sqrt{s} = 318 \text{ GeV}$
- Operational: 1992-2000 (HERA I)

2003-2007 (HERA II)

2

ZEUS

- H1 and ZEUS general purpose hermetic detectors
- ~0.5 fb⁻¹ per experiment
- In the **precision era** now: finalising HERA II, combining ZEUS and H1
 - **Physics**: proton structure, EW, QCD, diffraction, BSM searches, ...

Heavy flavour physics at HERA

• Beauty and charm quarks are produced in LO via Boson-Gluon Fusion:

Mass treatment in QCD

- Multi-hard-scale problem ($m_{hc}^{}$, $p_{T}^{}$, Q^2) \rightarrow several calculation schemes exist Massive scheme (FFNS)
 - Rigorous, fully massive treatment

- Expected to be valid at scales ~ m_{h c}
- Programs exist to calculate fully differential cross sections (HVQDIS, FMNR)

Mixed schemes (GM-VFNS)

- → Employ both FFNS and ZM-VFNS
- Interpolation is ambiguous \rightarrow various approaches (RT, ACOT etc.) exist
- No clear interpretation of the quark mass (consider it as an effective parameter)

Heavy flavour measurements can help to test and improve the schemes

Massless scheme (ZM-VFNS)

Neglects heavy quark masses

- Allows resummation of terms proportional to $\log(Q^2/m_{hc}^2)$
- Expected to be valid at scales >>m

Experimental methods

- Methods can be combined (e.g. lepton+jet, secondary vertex+jet, etc.)
- Can be used for *single* or *double* tagging

Only few results can be shown in this talk, many more to be found on H1 and ZEUS webpages

Beauty Photoproduction: lepton tag DESY-12-072

- Q² < 1 GeV², 0.05<y<0.65
- |η|<2

- Two electrons from semileptonic bdecays are exploited
- Gives access to very low p_T(b) values

FFNS describes beauty photoproduction well

Eur. Phys. J. C72 (2012) 2148

Beauty Photoproduction: summary

HERA

FFNS describes beauty photoproduction well in full range 3<p_<30 GeV

7

Beauty in DIS: lifetime tag

- 5 < Q² < 1000 GeV², 0.02<y<0.7
- E_τ^{jet}>5GeV, -1.6<η^{jet}<2.2
- Secondary vertices due to decays of beauty hadrons are reconstructed in association with jets

• FFNS describes beauty in DIS well

ZEUS-prel-10-004

Charm Photoproduction: D* tag

- $Q^2 < 2 \text{ GeV}^2$, 0.02 $< W_{vo} < 0.7$ 10² 40 **d**ơ/dŋ [nb] dơ/dp_T [nb/GeV] • Data •• FMNR • Data •••FMNR **H1 H1** p₋>1.8 GeV, |η|<1.5 **∼**GMVFNS GMVFNS 30 MC@NLO MC@NLO 10 20 D* candidates • Data — Fit result **H1** 1500 10 10⁻¹ 1000 ۳ ۳ ۳ 1.5 R^{norm} 1.5 500 0.5 0.5 8 10 12 -1.5 -0.5 0.5 6 -1 0 $N(D^*) = 8232 \pm 164$ p_T(D*) [GeV] η**(D*)** 0.15 0.14 0.16 0.17 Δ M [GeV]
 - **FFNS** and **GM-VFNS** describe data well, however uncertainties are significantly larger than the experimental uncertainties

Eur. Phys. J. C72 (2012) 1995

DESY-11-248

DESY-13-054

Charm in DIS: D* tag

- 5 < Q² < 1000 GeV², 0.02<y<0.7
- 1.5<p_<20 GeV, |η|<1.5

• **FFNS** works up to highest Q²

ZEUS

Charm in DIS: D* tag

• 5 < Q² < 100 GeV², 0.02<y<0.7

• 100 < Q² < 1000 GeV², 0.02<y<0.7

p_{_}>1.25 GeV, p_{_}*>2 GeV, |η|<1.8

p₁>1.5 GeV, p₁^{*}>2 GeV, |η|<1.5

• **ZM-VFNS** overshoots the data (even at high Q²!)

Eur. Phys. J. **C 71** (2011) 1769

Phys. Lett. B 686 (2010) 91

Combination of the D* cross sections

 H1 and ZEUS D* in DIS cross sections were combined to increase the precision

• FFNS agrees to data well

12

ZEUS-prel-13-002

Charm in DIS: inclusive production

Charm contribution to the proton structure function F_{2} :

$$\frac{d^2 \sigma^{ep \to c\bar{c}x}}{dQ^2 dx} \propto F_2^{c\bar{c}}(x, Q^2)$$

$$\frac{d^2 \sigma^{ep \to c \bar{c} x}}{dQ^2 dx} = \frac{2 \pi \alpha^2}{x Q^4} \left[\left(1 + (1 - y)^2 \right) \cdot F_2^{c \bar{c}} (x, Q^2) - y^2 F_L^{c \bar{c}} \right]$$

• Reduced charm cross sections:

$$\sigma_{red}^{c\bar{c}} = \frac{xQ^4}{2\pi\alpha^2(1+(1-y)^2)} \frac{d^2\sigma^{ep\to c\bar{c}x}}{dQ^2dx} = F_2^{c\bar{c}}(x,Q^2) - \frac{y^2}{1+(1-y)^2}F_L^{c\bar{c}}$$

 NLO QCD used to extrapolate from visible double-differential cross-sections to full phase space:

$$\sigma_{red}^{c\bar{c}}(\exp) = \frac{\sigma_{vis}(\exp)}{\sigma_{vis}(theory)} \sigma_{red}^{c\bar{c}}(theory)$$
¹³

Charm in DIS: combination

DESY-12-172

• All available charm measurements by ZEUS and H1 were combined

 \rightarrow a factor of two compared to the most precise individual measurement!

Combined charm cross sections

Theory describes data well

DESY-12-172

 Note that these data are not included in the PDF used for predictions

→ supports gluon PDF universality

- Theory uncertainty is dominated by charm mass (parameter) M_c variation
- Data are more precise than theory

 $[\]rightarrow$ have constraining power on $\rm M_{c}$

Charm mass determination

Charm data provides sensitivity to charm mass (parameter) M_{c}

FFNS GM-VFNS H1 and ZEUS H1 and ZEUS (³ 800 × (² (³ ⊂) × 750 × 750 _ک 700 **HERA-I** inclusive Ο Charm + HERA-I inclusive Charm + HERA-I inclusive FF (ABM) M_c^{opt} =1.50 ± 0.06 GeV $m_c(m_z)$ =1.26 \pm 0.05 GeV 680 **RT** standard 700 660 650 640 600 Ο 0 0 0 0 0 0 550 620 1.2 1.6 1.8 1.2 1.4 1.4 1.6 m_c(m_) [GeV] M_c [GeV]

 $m_c(m_c) = 1.26 \pm 0.05_{exp} \pm 0.03_{mod} \pm 0.02_{param} \pm 0.02_{\alpha_s} \text{GeV}$

Consistent with the world average of m (m)=1.275±0.025 GeV

Charm running mass (MS) m scan

DESY-12-172

16

Charm mass parameter in VFNS DESY-12-172

Charm mass parameter scan was performed in various VFNS schemes

 \rightarrow Optimal M_c depends on particular scheme!

DESY-12-172

Implications for LHC

Predictions depend strongly on M₂

Using optimal M_c for each of the VFNS schemes stabilises predictions! $_{18}$

DESY-12-172

Impact on PDFs

- Central values don't change significantly
- Uncertainties on PDFs reduce (xg, xc, xd, xu)!

DESY-13-054 New measurements (not in the combination yet) DESY-13-028

- New measurements are consistent with **HERA** combined
- Will improve the combination!

Summary

- HERA community is finalising data analyses still very active six years after the accelerator shutdown!
- Quantum Chromodynamics describes heavy flavour production at HERA well
- Experimental precision in general significantly better than theory uncertainties
- Charm data combination was performed significant improvement of precision compared to individual measurements
 - \rightarrow Charm running mass was determined with good precision
 - \rightarrow PDF uncertainties reduce
- More charm data are available for future combinations

Thanks a lot for your attention!

BACKUP slides

HERAPDF and **HERAFITTER**

HERAFITTER – an open source tool for **PDF** analyses

0.4

ZEUS Detector at HERA

- Almost hermetic
- General purpose

Data taking:

- 1992-2000 (HERA I): 126 pb⁻¹
- 2003-2007 (HERA II): 354 pb⁻¹

- Microvertex Detector (MVD) – silicon strip detector
- Central Tracking
 Detector (CTD) drift
 chamber
- Solenoid magnet, 1.43T
- Electromagnetic and Hadronic Calorimeters
- Muon Chambers