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Precision Jet Measurements at HERA
HERA-2 jet measurements

H1

High statistics

Excellent control over systematic uncertainties

electron measurement:  0.5 – 1% scale uncertainty

jet energy scale: 1% uncertainty!
effect on jet cross sections: 3 – 10%

trigger: 1 – 2% normalisation uncertainty

acceptance correction: 
4 – 5% uncertainty

luminosity: 2 – 2.5% normalisation uncertainty

Days of running
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Jet Production in DIS

Direct sensitivity to αs  and gluon PDF 

Boost to Breit frame, 2xP + q = 0

Momentum fraction of struck parton (in LO): ξ = x
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Observables
Inclusive Jets 
each jet above a given PT requirement contributes to the cross section: 
large statistics, calculation needs contributions from higher-order 
configurations 

Dijets 
events with at least two jets above a certain PT contribute: reduced 
statistics but NLO calculations have smaller scale dependence 

Trijets 
events with at least three jets above a certain PT contribute: smaller 
statistics and slightly larger experimental uncertainties but high 
sensitivity to αs (O(αs2) at LO)

Normalised Jet Cross Sections
benefit from partial cancellations of experimental and theoretical 
uncertainties by measurement of σjet/σNC
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HERA Jet Data in PDF Fits
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H1 and ZEUS HERA I+II PDF Fit
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H1 and ZEUS HERA I+II PDF Fit with Jets
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Only inclusive jet cross sections included 
in HERAPDF fits so far

H1prelim-11-034, ZEUS-Prel-11-001

Large potential shown: correlation between 
gluon PDF and αs(MZ) disentangled
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αs(MZ) = 0.1202 ± 0.0013(exp.) ± 0.0012(had) ± 0.0045(scale)
αs(MZ) = 0.1202 ± 0.0013(exp.) ± 0.0012(had) ± 0.0045(scale)
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Multijet Measurement in DIS

H1e’
jet

jet

jet

Physical correlations 
individual jet measurements are correlated: correlations between 
individual jets in the inclusive jet sample, dijet events are a subsample 
of inclusive jets, trijet and dijet events...

Experimental effects
correlations may change due to the detector resolution: introduces 
migrations between different jet samples
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Regularised Unfolding

m = A · x

Migration matrix A describes the detector response

m:
measured distribution (detector level)
x:
 true distribution (particle level)

Perform unfolding by analytic minimisation of 

χ2 =
1
2

(m−Ax)TV−1(m−Ax)T+τ2 · L
TUnfold (S. Schmitt), arXiv:1205.6201

Regularisation parameter τ suppresses large fluctuations

Correlation of datasets contained in covariance matrix V
Possibility to unfold four measurements at once: 
NC DIS, inclusive jet, dijet and trijet cross sections
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Unfolding of Jet Multiplicities
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Full Schematic Migration Matrix
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Matrix dimension: 2205 ! 671 Entries

Covariance Matrix: 2205 x 2205 Entries

Migration Matrix

Multidimensional 
unfolding in Q2, PT and y

Full treatment of 
migrations between jet 
observables 

Normalisation preserved 
with inclusive NC DIS 
events

Detector response 
obtained from simulation

Dimension:
about 600 x 2200 bins
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MC Test
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Monte Carlo Test

 Pull distributions
 Corrected vs. true distribution

 Two Incl. DIS Models
 Rapgap (MEPS)

 Django (CDM)

 Statistically independent samples

 Checking
 Unfolding with same model

 Unfolding with 'other' model

 Compare
 Bin-by-bin

 Based on bin-wise correction 
factors 

 Regularized unfolding
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Performance test:
Test unfolded result w.r.t.
MC truth

Comparison:
Unfolded results with 
results obtained bin-wise 
derived correction factors
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Comparison to “bin-by-bin”

28. Februar 2012 Daniel Britzger - DIS 2012 12

Data unfolding

Comparison to bin-by-bin method

 H1 Data

 AUnfold = ARapgap + ADjango

 Bias also in data

 Uncertainties are larger

 -> But knowledge of correlations
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H1 Preliminary
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Performance on data
‣ bin-by-bin result gives slightly higher 

cross section (~0.8σ)
‣ larger stat. error - but full covariance 

matrix available
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Unfolded Correlation Matrix

28. Februar 2012 Daniel Britzger - DIS 2012 13

C
o

rr
e

la
ti

o
n

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

NC Bin

1 4N
C

 B
in

1

4

N
C

 B
in

1

4

       Bin
Inclusive Jet

1 5 9 13 17 21

  
  
  
 B

in
In

c
lu

s
iv

e
 J

e
t

1

5

9

13

17

21

  
  
  
 B

in
In

c
lu

s
iv

e
 J

e
t

1

5

9

13

17

21

Dijet Bin

1 5 9 13 17 21

D
ij
e
t 

B
in

1

5

9

13

17

21

D
ij
e
t 

B
in

1

5

9

13

17

21

Trijet Bin

1 4 7 101316

T
ri

je
t 

B
in

1

4
7

10
13

16

T
ri

je
t 

B
in

1

4
7

10
13

16

NC DIS

Inclusive Jet

Dijet

Trijet

 Bin2Q
 BinTP

Correlation Matrix

 Types of Correlations
 Correlations resulting 
from unfolding

 Intrinsic physical 
correlations

 - Between measurements

 - Within Inclusive Jet

 Useful for
 Normalized cross sections

 !Jet / !NC

 Combined fit to all jet 
data

Correlation
Neighboring PT bins

Correlation
Neighboring Q2 bins

H1 Preliminary

Correlation Matrix

H1-Prel-12-031Trijet Bin

Full, partly anti-
correlated, 
covariance matrix 
available after 
unfolding

Normalisation of 
individual 
measurements 
possible using full 
error propagation

Valuable 
information for 
QCD fits
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Normalized Multijet cross sections
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Determination of αs(MZ)
NLO calculation depends on PDF and αs(MZ)

Keep PDF fixed and fit αs(MZ)              ⇒

Hessian method: Minimise χ2(αs) αs

• Experimental uncertainty obtained by χ2 = χ2min +1

• Theoretical uncertainty obtained by offset method:

‣ Repeat fit for µr and µf varied by a factor of 1/2 and 2

• PDF uncertainty calculated with PDF eigenvalues

• Consistency with PDF sets with varied αs(MZ) checked

χ2(αs) = uT V −1u +
∑

k

ε2k

ui = σexp
i − σtheo

i (αs,pdf)

(
1−

∑

k

∆ikεk

)
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Determination of αs(MZ)
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!s Fits to Individual Measurements

 Combined Fit

 !s = 0.1177 +/- 0.0008 (exp)
 "2 / ndf = 104.608 / 64 =  1.634

 Reasonable !2/ndf for each fit

 Large tension between Incl. Jet and Dijet

 Similar in previous H1 and ZEUS analyses

 Normalized Inclusive Jet

 !s = 0.1197  ± 0.0008 (exp)  ± 0.0014 (PDF)  ± 0.0011 (had) ± 0.0053 (theo)
 "2 / ndf = 28.7/23 = 1.24

 Normalized Dijet

 !s = 0.1142 ± 0.0010 (exp) ± 0.0016 (PDF)  ± 0.0009 (had)  ± 0.0048 (theo)
 "2 / ndf = 27.0/23 = 1.17

 Normalized Trijet

 !s = 0.1185 ± 0.0018 (exp) ± 0.0013 (PDF) ± 0.0016 (had)  ± 0.0042 (theo)
 "2 / ndf = 12.0/16 = 0.75

 Fit Quality Multijets
 Very bad "2/ndf for combined fit

 Because of tension between Incl. Jet and Dijet

Good χ2/ndf for each individual observable

Tension between αs from dijets and inclusive/trijets observed, but αs values 
well within theoretical uncertainties

Fit to all data points
Relatively large χ2/ndf
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Combined Fit
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!s Fits to Multijet Measurements

 Combined fit to
 Normalized Inclusive Jet, Normalized Dijet, Normalized Trijet

 Higher orders
 k-factor can be interpreted as indicator for higher orders

 Inclusive Jets are more sensitive in pQCD than Dijets

 Multijets: 1.05 < k < 1.45

 Cut on k-factor
 Demanding NLO corrections < 30%

 Trade-off between #bins and fast convergence of perturbative series

 Keeping 42 out of 65 bins

 Normalized Multijet (k-factor < 1.3)

 !s = 0.1163 ± 0.0011 (exp)  ± 0.0014 (PDF)  ± 0.0008 (had)  ± 0.0039 (theo)

 "2 / ndf = 53.2 / 41 = 1.30 

LONLO
k !! /=

Largest benefit is from a combined fit
simultaneous fit to normalised inclusive jet, dijet and trijet cross sections

Sensitivity to higher orders
theoretical uncertainty estimated by variation of scale
use k-factor as indicator for higher order contributions
k = σNLO/σLO

range of k-factor: 1.05 < k < 1.45

Restrict analysis to k < 1.3
faster convergence of perturbative series
trade-off between number of data points and smaller theoretical uncertainty

(much better χ2/ndf)
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Comparison of αs(MZ) Values
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Comparision of !s values

)
Z

(Ms!
0.1 0.11 0.12 0.13

World average
S. Bethke, Eur. Phys. J. C64, 689 (2009)

Aleph 3-jet rate, NNLO
Phys. Rev. Lett. 104, 072002 (2010)

2ZEUS dijet at high Q
Phys. Lett B 507, 70 (2001)

2ZEUS inclusive jet at high Q
ZEUS-prel-10-002

2H1 multijets at low Q
Eur. Phys. J. C67, 1 (2010)

2H1 norm. multijets at high Q
Eur. Phys. J. C65, 363 (2010)

 (this talk)2H1 norm. trijet at high Q
H1-prelim-12-031

 (this talk)2H1 norm. dijet at high Q
H1-prelim-12-031

 (this talk)2H1 norm. inclusive jet at high Q
H1-prelim-12-031

 (this talk)2H1 norm. multijets at high Q
H1-prelim-12-031

Uncertainties:  exp. theo.
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Summary

Regularised Unfolding of Jet Multiplicities 

‣ multi-dimensional unfolding of various measurement simultaneously 

‣ full covariance matrix and robust estimation of systematic uncertainties

Precision Measurement of Multijet Production at high Q2

‣ absolute and normalised cross sections 

‣ important testing ground for pQCD calculations

‣ input for future QCD analyses

Determination of αs

‣ using unfolded measurements with full 
covariance matrix  

‣ dominated by theoretical uncertainty
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