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QCD dynamics at low Bjorken-x

HERA : DIS at low Bjorken-x down to 10-* — large Yy*p centre-of-mass-energy
(Woyp = Q2/x)

e enhanced phase space for gluon cascades exchanged between the proton and the photon
e pQCD - multiparton emissions described only with approximations :

e e e DGLAP : Dokshitzer-Gribov-Lipatov-Altarelli-Parisi evolution
Q2! applicable at large Q2

X — Assumes strong ordering of parton k;
 — ’ Resums terms ~ ( 0,5 InQ?)"
e Xied, Kt ie1
gr X, Krs e BFKL : Balitsky-Fadin-Kuraev-Lipatov evolution
Frrrrrery Transition from DGLAP to BFKL scheme expected at low x
E“‘”"‘““ Xi, Kry No ordering in ky, strong ordering in x;
. K Resums terms ~ (ag In(1/x) )"

e CCFM : Ciafaloni-Catani-Fiorani-Marchesini equation
applicable at all x and Q2
Unification of DGLAP and BFKL approaches
Emitted partons are ordered in angles




QCD dynamics at low Bjorken-x

A
QZ

e Search at HERA for effects of parton dynamics

beyond the standard DGLAP approach CCFQ DGLAP
e Define observables / phase space regions BFKL

—
sensitive to low x effects @
2 2’
x~Q /W

e Strong rise of the proton structure function F,(x, Q?) with decreasing x
— well described by NLO DGLAP over a large range of Q2

F, measurement is too inclusive to discriminate between different QCD evolution
schemes

Hadronic final states — reflect kinematics, structure of gluon emissions

( forward jets / particles, inclusive jets, multijet production, azimuthal correlation
in dijet events, tranverse energy flow, pt distribution of hadrons )




Forward jets in DIS

e e’ Mueller — Navelet jets in DIS (1990) :
Q r'}r* High transverse momentum and high energy jets
¢ produced close to the proton remnant direction
———( ( forward region in LAB )

vy Kitl, I(Ti+‘l
prrsTrsey X, kTi

Suppress standard DGLAP evolution in Q2 :
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: forward pZT,iet =~ Q2
LR LD X k jet . -
b BT Enhance BFKL evolution in x :
N
p Xtwdjet = Ewajet / Ep >> Xg;

BFKL - more hard partons emitted
close to the proton
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Studies of forward jets are D
e = - .

an experimental challenge : —_— . —
: ; : . 27.5GeV | - 5% . - . | 920 GeV

region of high particle densities ' ST 7

close to the proton remnant ST A

DIS event at low Q2



Monte Carlo models with different QCD dynamics

RAPGAP - DGLAP

LO QCD matrix elements
+ HO modelled by leading
log parton showers
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DGLAP

0

Single DGLAP ladder with
strong ordering in k;

ARIADNE
Colour Dipole Model

CDM: QCD radiation from
the colour dipole formed
by the struck quark and
the proton remnant.

Chain of independently
radiating dipoles formed
by the emitted gluons.

Jet
Jet
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BFKL- like Monte Carlo :
random walk in k;

CASCADE - CCFM

Off-shell QCD ME
+ parton emissions based
on the CCFM equation

kI — factorisation

i
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Input : unintegrated gluon
density function, different
uPDF sets include singular
or full terms of the gluon
splitting function 5



Fixed order NLO DGLAP predictions

Forward jet cross sections — comparison with the predictions of pQCD

o

-

e Forward jet analysis — reconstruction of jets in the Breit frame — at least dijet topology

at NLO (o.52) accuracy

NLOJET ++ program ( Nagy & Trocsanyi, 2001 ) :
dijet production at parton level in DIS at NLO (o5?)

e PDF : CTEQ6.6, ag(M,) = 0.118
e parton level cross sections corrected for hadronistaion effects
using the RAPGAP model




Azimuthal decorrelation of forward jets in DIS

Azimuthal angle difference A® between the scattered positron and the forward jet
may offer a signature of BFKL dynamics

[C /
e

e Quark Parton Modele + g — e + q
simple two-body kinematics AQ = g — Opygjer = T ¢

e Inclusion of higher order processes O(ag") 54
decorrelates the jet from the positron ST X, Kz,
XTHTTTY
4
As the rapidity distance approximated by Y = In(X,qjet/Xg;) Fﬁi’
between the scattered positron and the forward jet grows ij:ﬁ-ﬁ-ww Xy ko

=
STETTTE X,y kg
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the probability of multi-gluon emissions is increased

e J. Bartels et al., Phys. Lett. B384(1996)300
calculated A¢ in LO BFKL, resumming the dominant
terms ~ (ogY )"

e S. Vera & F. Schwennsen, Phys. Rev. D77(2008)014001
calculated A¢ in NLO BFKL, resumming the dominant

terms ~ og (oY )" 7




Data selection

H1 experiment, HERA data (2000) with 38.2 pb-1

DIS selection Forward jets ( inclusive ky algorithm )

Jets reconstructed in the Breit frame

01 <y < 0.7 from combined track-calorimeter cluster objects
5 < Q2< 85 GeV?2 and then boosted to LAB, all cuts in LAB
0.0001 < x < 0.004 P, fwdjet > 6 GeV

1.73 < andjet < 2.79
0-5 < pT,dejetz/Qz < 6-0
e suppress k; ordered evolution by cut on p;2/ Q2

e enhance phase space for BFKL evolution without
kr ordering by cut on X gjet

~ 14000 DIS events with at least one forward jet

if more than one forward jet is found, the jet with the largest 1y, q;et is chosen
N =-In(tan 6/2 ), 6 defined with respect to the initial proton direction



do/dAd (pb/rad)

Forward jet azimuthal correlations

At higher Y correspondig to lower x the forward jet

is more decorrelated from the scattered electron

Positron — fwd jet rapidity

forward jet
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| ¢ H1 data

Energy scale uncert. |
— CDM

20=Y =34

3.4=Y <425
<X =>=0.0012

425=Y <575
< X >=0.00048

%
s

norm. data

1 2 3
Ad(rad)

Cross sections :
e well described by BFKL-like
model CDM

e DGLAP predictions below
the data

e CCFM (set AO) as good
description as CDM at large Y

Ratio R of MC to data
for normalised cross-section

o 1 dO_M(_: / 1 (.iaclat.a
oM@ dAp odata dAep

The shape of A} distributions
is well described
by all MC models




Forward jet azimuthal correlations

Predictions of the CCFM model depend on the choice of uPDF

100 forward jet
E | * H1 data - Z ]
'_;.é_ g0 oo Egﬁgrﬁ?f;;ﬂ;t"meﬂ- - oL e Cross sections
= - — CCFM, set2 - LT i strongly depend on uPDF
= I I . i
T i i rene =t B
60 |- -1 I — Y B S el e
E [ e } :E I }F } ‘Ii IL i e Shape of A¢ distributions
s0 | 5 iF § - — - - at low Y shows sensitivity
;i,— - L to uPDF
20 [ u - well described by the set A0
B 20=Y <34 B J3.4=Y <425 B 425<=Y <575
i <X >=0.0024 i <X == 0.0012 i <X >=0.00048
l | | | | | | | | | | | | | | | | |
® s N N
I R eI araeiiu
I | L1 11 | L1 11 | L1 11 | L1 11 | L1 11 | L1 11 | L1 11 | L1 11 |
0 1 2 3 1 2 3 1 2 3
Ad(rad)

Different splitting functions used in uPDF :

set AO — only singular terms of the gluon splitting function
set 2 -includes also non-singular terms
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Forward jet azimuthal correlations

Comparison to NLO (O(ag2)) predictions

forward jet
—~ 100
© [ e H1data i i
S go oy ecaleuncet I u NLO predictions
z [ - 0Bu < <2u, [ I
T el B i {{}I I }}_ I o shape_of A¢ distributions
T i “I’:I -k o 1D S = described, but
a0 |- 3 I e [ central value too low
3 S e large scale uncertainty
20 e 20<Y<34 | 34<Y<425 - 425<Y<575 ( of up to 50% )
b et b S || indicates importance of
o 1 23 1 23 2z 3 higher orders
Ad(rad)
NLOJET++

PDF : CTEQ6.6, og(M,)=0.118

renormalisation and factorisation scales :

urz = ufz = (pzT, fwdjet T QZ) /2

theoretical uncertainty : factor 2 or 2 applied to 1, and ; scales simultaneously y



A decorrelation: no discrimination between different evolution schemes

e Does forward jet originate from the hard matrix elements ? No !
Studies of parton to hadron correlation with the DGLAP-based RAPGAP model

— ~ 80% of forward jets produced by parton showers

e Why no dependence of A¢ shape on parton shower ?

o 045 11— o 0.45p— 5 o 0.45p— -

3 F —— RAPGAP with PS 3 - 1 3 o4k ]

T 04 . RAPGAP no PS E = 04ap ER “E E

© - 3 © = . © - 3

RAPGAP T 035 - T 035F 4 © 035 -

L = FTTT S L F i = E

~ 03[ i 4 +~ 03fF 4 = 03[ =

parton showers 025 - N 025 0o2sf E
. = = s - —3
switched on / off 02g  — E 0.2 02F ot E
0.15 :;I_:!_ = 015 f ] 0.15 | =

01 E;“2-0 | 3.4 E 3 3.4 <In(x,_/x) < 4.25 E 01 4.25 < In(x,_/x) < 5.75 E

= L < In(X._ /X)) < 3. . - A< INEX, X)) < 4. 3 — . < INUX, /X)) < I, 3

0.05 |- (jec) = 0.05 [ i) = 0.05 et =

0 C L L L L | L L L L | L L L L |: 0 C L L L L | L L L L | L L L L |: 0 = L L L L | L L L L | L L L L |:

0 1 2 3 0 1 2 3 0 1 2 3

A¢(rad) A¢(rad) Ad(rad)

e The shape of A¢ only slightly changed when the initial state parton shower is switched off

Decorrelation in A¢ is governed by the phase space requirements
( mainly by rapidity separation Y )

Normalisation of the cross sections depends on the evolution scheme




Forward jet cross section do / dY

forward jet

f-; . e H1 data : :
S s00 | Enerayscale uncert e BFKL-like model CDM describes the data best
o - ---- CCFM
IS P DGLAP e DGLAP too low, especially at large Y
200 — e CCFM (set AQ) predictions to high at low X,
i but describe the data at large Y
100 :—_ ________
n: _I | | L1 1 | I I | | L1
1.25 :_ R = norm. TE
__I L1 1 | Ll 1 1 | L1 1 1 | L1 1

2 3 4 5

Y

Y = In(x; / X) rapidity separation between

the most forward jet and the scattered positron 3



do/dAd(pb/rad)

Forward and central jet cross sections dc / dA¢

forward and central jet

| * H1 data
Energy scale uncert.
| — com i
50 [~ --- ccrm —
I DGLAP X } } {
B 20=Y<4.0 B 4.0<Y <575
B <X >=0.0018 B <X >=0.00058
| | | | | | | | | | | |
1.25 | —
B LI B R = norm. MC
0.75 | | norm. cata
NS N N [N TN T TN I T T TN T OO O N O
0 1 2 3 1 2 3
Agd(rad)

e Subsample of events with
forward jet + additional central jet
( ~8900 events )
pT,cenjet >4 GeV

1< T’|cenjet <1

AT'I - T]fwdjet - T’lcenjet > 2
( enhance radiation between the forward
and central jet)

e A0 still between the forward jet and
the scattered positron

e at low Y all models describe the data
reasonably well

e at high Y all models are below
the measurements

» with CCFM (set AO) closest to the data
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do/dAd(pb/rad)

Forward and central jet cross sections dc / dA¢

Comparison to NLO (O(ag2)) predictions

forward and central jet

| e H1 data

Energy scale uncert. o
" —— NLOJET++ i NLO predictions
50 === 05 <p <2y, — T

} 5 I I I— e at low Y reasonable description

of the data

e at high Y, central value too small
but the data still within theory
uncertainty

e large scale uncertainty

B 20=¥Y <40 B 40<Y <575
B <X >==0.0018 N < Xx>=0.00058 ( Of up to 40%, )
IIII|IIII|IIII|IIII|IIII|IIII| - = H =
0 1 2 3 1 5 3 indicates |rr_1por_tance of higher
order contributions
Ad(rad)
NLOJET++

PDF : CTEQ6.6, ag(M,)=0.118
urz = ufz = (0-5 (pT, fwdjet T pT, cenjet)2 + QZ) /2
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Conclusions

e Differential cross sections & normalised distributions have been measured

as a function of A and the rapidity separation Y,
between the forward jet and the scattered positron

e Cross sections are best described by the BFKL-like model CDM
e DGLAP-based RAPGAP model is substantially below the data

e The CCFM model gives a reasonable description of the data
but shows sizeable sensitivity to uPDF

e The shape of A} distributions is well described by MC models based on
different QCD evolution schemes

e NLO DGLAP predictions are in general below the data, but still in agreement
with the large theoretical uncertainties
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Forward jet production at NLO BFKL

S. Vera and F. Schwennsen, Phys. Rev. D77 (2008) 014001
BFKL kernel at NLO accuracy, jet vertex & photon impact factor using LO approximation

Results
<C<1)S 2A¢> NLO BFKL for forward jets with ZEUS cuts
: N (resummed kernel) 20 < Q2 < 100 GeV2
08F \ 005 <y < 0.7
N 4107 < xg < 5107
.06} NN 271 02
. NLO BFKL 0.5<p’/Q°<2.0

04
A® = Q) — Drwijet

Y = In( X;; / Xg,) — €volution length
Y in BFKL formalism

02

e The forward jet is more decorrelated from the scattered lepton
for larger rapidity difference Y ( center of mass energy)

e The azimuthal angle correlations increase when HO corrections
are included for a fixed value of Y

18



Systematic uncertainties

do/dAd do/dAd do/dY
fj fi + cj
Model dependence
(CDM,Rapgap) 2 — 6%
LAr hadronic en. scale (¥4%) 7 — 12%
Spacal em en. scale (+1%) below 3%

Angle of scattered electron

(¥ 1 mrad)

negligible effect

Trigger 2 — 4%
Luminosity 1.5%
Total 11 -12%
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A¢ decorrelation :

no discrimination between different evolution schemes

e forward jet originates from the hard matrix elements ?
( similar in used MC models)

Studies of parton to hadron correlation with the DGLAP-based RAPGAP model :

P define “distance measure” AR between parton jet and hadron jet

AR =.J/(AD)” + (AD)’

AR < 0.5 hadron jet is correlated to parton from ME / from parton shower

» Y bin forward jet originated from PS
binno.1(2<Y <3.4) 51.9%
bin no. 2 (3.4 <Y < 4.25) 67.5%
bin no. 3 (4.25 <Y < 5.75) 79.0%

20



Forward jet cross section do/dx

H1 data : Eur. Phys. J. C46 (2006)27

H1 forward jet data

o) H1
E.- 1000 E. scale uncert.
o Bl RG-DIR
b -=== RG-DIR+RES
e —CDM
©
©
500 - :"_.

0.001 0.002 0.003 0.004

LO DGLAP (RG-DIR) below the data

CDM model and DGLAP resolved

photon model (RG-DIR+RES) closest
to the data, however the data are still

below predictions at low x

BFKL calulations

Kepka, Royon, Marquet & Peschanski

Phys. Lett. B665 (2007) 236

—1000
P . NLL BFKL
f H1DATA sS4 full ( )
)
=s0 1Y ) 54
........... NLO QCD
600 . LL BFKL
400 /\
0N
NLO DGLAP
(NLOJET++)
0 [ 1 1 1 I 1 1 1 1 | 1 1 1 1 I 1 1 1 1 I 1 1 1 1 | 1 1 1 “I.--l 1 1 “I““I. I 1 1 1 1
005 01 015 02 025 03 035 04
xlo

NLO DGLAP below the data at low x |

Difference between LL-BFKL and
NLL-BFKL ( NLL BFKL kernel + free
normalisation parameter ) is very
small
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Mueller- Navelet jets at LHC — complete NLL BFKL calculations

Colferai, Schwennsen, Szymanowski & Wallon,
JHEP 12(2010)026
next-to-leading corrections to the Green’s function and to the Mueller-Navelet vertices

LHC VS = 14 TeV, prjer = 35 GeV, Py jer2 = 50 GeV

Azimuthal correlation <c0s20> = <c0S(2 - (Pjer1 — Pjer2 — T))>

NLL vertices +

€2 — (cos 2¢) imp. collinear NLL Green’s fn.

Co
05

NLO DGLAP (program DIJET) e importance of NLL vertex corrections

o e no significant difference between
2 e . e e NLL BFKL and NLO DGLAP

04 _-".—_'____-___.__:___________.-_:_%_-:__- === sS-t-= = s - Ea __“—_f_-__ - '_ '_ ———

0.6

pure NLL

o2k LL vertices +
imp. collinear NLL Green’s fn.

M . H1 measurements —

p 7 3 0 0 the electron-forward jet decorrelation in
DIS does not discriminate between
different evolution schemes
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Forward jets in DIS, Bartels et al., 1996, A® = @, — @, in the LAB frame

normaIiS(-:,‘d LO BFKL
cross section

1.50

1.25

1.00 " / :
Full LO BFKL |
0.75 r prediction -
" Xgy (0.2-0.4)10°3
0.50 ]
0.00 3.14 6.28

(a,)
[ Approximate :
- BFKL Born calculation-

BFKL Born term

BFKL Born - clear maximum at A® = 7/2
Full LO BFKL — no ® dependence

Fixed order O(0.5?) predictions

e+g—e+qq+g

1.50 |

- larger Xg,

| | (34-3.6)10°
1.25 T ]

1.00 |

-1 (0.2- 0.4)-10° )
o0 . . . . . ]A®[rad]
0.00 3.14 .28

small Xg, — fixed order O(0ig?) and
BFKL Born predictions are similar

(max. at A® ~ T/2)
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