45^{emmes} Rencontres de Moriond

Experimental Summary

Cristinel Diaconu

Centre de Physique des Particules de Marseille and Deutsches Elektronen Synchrotron Hamburg

Moriond QCD 2010

- Exciting results and excellent talks
- A summary can only be a selection, tried to do my best
- 93 talks

- Some experimental subjects will be covered by Dmitri

SM (Sci Maestro)

In perfect shape.... Open Questions: -why 3 generations? -why (so) different fermion masses? -why these 4 forces? ...

And btw : ...do we know how QCD really works?

HEP experimental programs in +-10 years

The experimental frontiers of the high energy physics

Precision

Babar, Belle, Cleo_c,BESIII, KLOE, NA48, COMPASS, NA61

The experimental frontiers of the high energy physics

Precision

Proton structure, strong coupling, CP violation, decays, resonances, diffraction

LHC startup

R. Bailey

Luminosity Production!

LHC Detectors Readiness

- ALICE, ATLAS, CMS, LHCb have proven ability to reconstruct data and do physics analysis (albeit small data set so far)
 - Fruitful preparation with cosmics
- Calorimeters and tracking in very good shape
 - Subtle studies performed: conversions, dE/dx
- Particle identification demonstrated
 - Electrons and photons
 - Muons
 - Hadronic final state (Ptmiss), energy flow (CMS)
- Simulation in agreement with the data
 - Very good starting point for the first analyses

LHC start-up:ATLAS

Calorimeters

E.Monnier S.Rappocio Chiara Rovelli

ALICE: identified particles

F.Noferini

dEdx in the TPC

Tracking and muons CMS

D.Giordano G.Masetti

dE/dx in the silicon detector (analog readout)

ATLAS Tracking

Andreas Salzburger

Material buget measured with conversion photons V0s identified

Very good agreement with the simulation

Entries / 8 mm

Luminosity measurement LHCb Vladislav Balagura

Luminosity measurement, succesful machine monitoring

LHCb: RICH and muons

Caterina Deplano

Strange particles production K⁰_s

Marc Knecht

Charged particles multiplicity

Data precision highlight differences to MC models

Charged particles multiplicity

Jan Fiete Grosse-Oetringhaust Jacek Otwinowski

Detailed tracking studies prove a robust identification dEdx resolution 5.5% (as design) Discriminate models

Charged particle multiplicity

Christoph Roland

pp compared to AA

LHC is at the energy frontier, look forward for more data

pp data

LHC outlook

2009		2010		2011	
Repair of Sector 34	1.18 nQP TeV 6k/	$\frac{3.5 \text{ TeV}}{\text{Isafe} < I < 0.2 \text{ Inom}}$ $\beta^* > 2 \text{ m}$	lons	3.5 TeV ~ 0.2 Inom β* ~ 2 m	lons
No Beam	в	Beam		Beam	

Plan: 100 pb-1 in 2010, 1fb-1 by 2011 + Heavy lons @ 7 TeV

If this is achieved, a vigourous start of the physics program is expected soon:

- Early B-physics
- W and Z production
- Top
- Higgs
- High mass dilepton resonances
- SUSY
- Universal Extra Dimensions

I.Vichou

The experimental frontiers of the high energy physics

Precision

Proton structure, strong coupling, CP violation, decays, resonances, diffraction

Combined Higgs searches

Weiming Yao Ralf Bernhard Shalhout Z. Shalhout

First joint CDF&D0 publication on SM Higgs search(PRL 104 061802 2010)

• Set 95% CL mass exclusion: 162<m_H<166 GeV/c₂ (159<m_H<169 expected)

Since march 2009:

The sensitivity improved: work on many channels, Grab as much sensitivity as possible (even 1/100 is useful) Slight excess, exclusion domain reduced.

Higgs Prospects

Large data sets accumulated in the last/next 18 months may lead to another "step" Exciting times ahead!

Higgs from precision

Johannes Haller

Room for new physics from precision

Johannes Haller

Non-standard Higgs

Sébastien Greder

ALEPH:

James Beacham

C.Diaconu, Moriond QCD 2010

Di-Bosons at Tevatron

Direct probe into the gauge structure of the SM Benchmark for experimental capabilities (Higgs) New Physics effects

Vadim Rusu

Z+gamma

O CP²: h₁, h₂
V_{3μ}(P) ~
V_{3μ}(P) ~

ο σ=4.6±0.2(stat)±0.3(syst)±0.3(lumi)pb

0 NLO = 4.5±0.4pb

Experiment	LEP II	D0	CDF (+MET)	D0(+MET)	
Luminosity(fb ⁻¹)	0.7	1.1	1.5	3.6	
h_3^Z	-0.20, 0.07	-0.083, 0.082	-0.05, 0.05	-0.033, 0.033	-0.037,0.038
$h_4^{\tilde{Z}}$	-0.05, 0.12	-0.005, 0.005	-0.0034, 0.0034	-0.0017, 0.0017	-0.0017,0.0017
h_3^{γ}	-0.049, 0.008	-0.085, 0.084	-0.051,0.051	-0.033, 0.033	-0.038,0.040
h_4^{γ}	-0.02, 0.034	-0.005, 0.005	-0.0034, 0.0034	-0.0017, 0.0017	-0.0017,0.0017

New CDF analysis optimized threshold

 $V_{1\alpha}(q_1)$

 $V_{2\beta}(q_2)$

Top production

Michael Begel

12 new measurements (1-5 fb⁻¹) released in the last year

Inclusive $t\bar{t}$ production cross section known to $\sim 6.5\%$

Top mass measurements

Hyunsu Lee

New measurements

CDF LJ (ME) =172.8 \pm 1.3 GeV/c²

CDF LJ (TM) =172.1 \pm 1.5 GeV/c²

 $CDF DIL(TM) = 170.6 \pm 3.8 \text{ GeV/}c^2$

Precision to 1.3 GeV (0.75%) from single measurements

Top properties

Veronica Sorin

D0: http://www-d0.fnal.gov/Run2Physics/top/top_public_web_pages/top_public.html

Top properties

Veronica Sorin

A general investigation of the top quark couplings

$$L_{tWb} = \frac{g}{\sqrt{2}} W_{\mu}^{-} \overline{b} \gamma^{\mu} \left(f_{1}^{L} P_{L} + f_{1}^{R} P_{R} \right) t - \frac{g}{\sqrt{2}M} \partial_{\nu} W_{\mu}^{-} \overline{b} \sigma^{\mu\nu} \left(f_{2}^{L} P_{L} + f_{2}^{R} P_{R} \right) t \quad (2.7 \text{ fb}^{-1})$$

In SM: expect $f_{1}^{L} = 1$, all others cancel $+ h.c.$

s-channel $\sigma(tb) = 0.88 \pm 0.05 pb$

Single top

Arán García-Bellido Nathan Goldschmidt

Surgery of the single top production: s/t cross sections, polarisation, width, searches Amazing program!

t-channel

 $\sigma(tqb) = 2.34 \pm 0.13 pb$

...and searches

Search for $t \rightarrow H^+ b$, where $H^+ \rightarrow W^+ A$

▶ If $m_A < 2m_b$, $A \rightarrow \tau^+ \tau^-$ will dominate

Searches for new physics with high scales

Lidija Živković

CDF Run II Preliminary

Model	Mass [GeV]
Z'(SM)	961
Ζ'(η)	873
Ζ' (χ)	857
Ζ'(ψ)	846
Z'(N)	831
Z'(sec)	788
Z'(I)	755

Lower limits on the mass of Kaluza-Klein excitation of the graviton of 560 GeV - 1040 GeV for $0.01 \le k/M_{Pl} \le 0.1$.

Will the new physics appear at the end of the data taking?

W production in ep collisions

The total single W cross section (at $\sqrt{s} = 317 \text{ GeV}$) = 1.06 ± 0.16(stat.) ± 0.07(sys.) pb in good agreement with SM prediction 1.26 ± 0.19 pb (from EPVEC at NLO)

The experimental frontiers of the high energy physics

Proton structure, jets, strong coupling, Hadrons, Heavy flavours

Proton structure measurements at HERA

Precision to 1% at low x

Katie Oliver

Predictions for LHC

Combined data is extremely precise at low x Systematic errors in PDF determination become dominant

PDF's and their erros

1.20.8 NNPDF1.0 $p\overline{p} \rightarrow W + X \rightarrow l \nu + X$ √s=1.96 TeV NNPDF1.0 [bench*] MRST2001E NNLO MSTW2008 68% C.L. $\chi^2/13=2.8$ 0.6 MRST bench NNLO ABKM09 $\chi^2/13=8.3$ NNLO JR09VF $\chi^2/13=7.8$ KUX O $A(y_W)$ 0.4 0.2 0.2CDF, L=1 fb⁻¹ arXiv:0901.2169 0.0 0.0 0.5 2.5 1.0 1.5 2.0 3.0 Уw

Most fine analyses (NNLO): different results Work ongoing to refine the theoretical treatment Benchmarks different NNPDF: unbiased neural net PDF parameterisation Global fit released NNPDF2.0

Giancarlo Ferrera

Maria Ubiali

Next step at HERA: high Q2 data

$$A^{\pm} = \frac{2}{P_e^+ - P_e^-} \left(\frac{\sigma^{\pm}(P_e^+) - \sigma^{\pm}(P_e^-)}{\sigma^{\pm}(P_e^+) + \sigma^{\pm}(P_e^-)} \right)$$

Longitudinal structure function

Combination of H1 and ZEUS data Towards new constraints and interesting advances at low x

Inclusive jet measurements at Tevatron

Check QCD at very large PT Constrain PDF's at large x Unique sensitivity (not superceded by LHC)

Jets at Tevatron : dijet mass

Darren Price

Strong coupling measurements from jets

EW bosons as QCD workers

S. Grinstein

W at RHIC

Justin Stevens

C.Diaconu, Moriond QCD 2010

2

ISR measurements at b-factories

KLOE measurement hadronic cross section

$$e^{-}e^{+}, \qquad s' \rightarrow badr, s' \rightarrow s'$$

$$a_{\mu}^{\text{had}} = \frac{1}{4\pi^3} \int_{x_1}^{x_2} \sigma^{\text{had}}(s) K(s) ds$$

$$\sigma_{\pi\pi}(\mathbf{s}_{\pi}) = \frac{\pi \alpha^2 \beta_{\pi}^3}{3 \mathrm{s}} \left| \mathsf{F}_{\pi}(\mathbf{s}_{\pi}) \right|^2$$

<u>а, ля (0.35-0.85GeV2):</u>

KLOE08 (small angle) KLOE09 (large angle)

$$\begin{bmatrix} a_{\mu^{\pi\pi}} = (379.6 \pm 0.4_{stat} \pm 2.4_{sys} \pm 2.2_{theo}) \cdot 10^{-10} \\ a_{\mu^{\pi\pi}} = (376.6 \pm 0.9_{stat} \pm 2.4_{sys} \pm 2.1_{theo}) \cdot 10^{-10} \\ 0.2\% \quad 0.6\% \quad 0.6\% \end{bmatrix}$$

CMD-2

KLOE09 (large angle)

 $a_{\mu}^{\pi\pi} = (48.1 \pm 1.2_{\text{stat}} \pm 1.2_{\text{sys}} \pm 0.4_{\text{theo}}) \cdot 10^{-10}$ $a_{\mu}^{\pi\pi} = (46.2 \pm 1.0_{\text{stat}} \pm 0.3_{\text{sys}}) \cdot 10^{-10}$

Competitive precision Shift in a_{μ} remains in the 3 sigma region

C.Diaconu, Moriond QCD 2010

CLEO-c: the nature of hadronic decays Ds->PP

Marina Artuso

Understanding of the strong interaction mechanisms in hadronic decays

Prediction based here on SU(3) and a subset of discrete symmetries

Cabibbo single supressed

Meson	Decay	$\mathcal{B}[1]$	p^*	$ \mathcal{A} $	Rep.	Predicted	$B(10^{-3})$
	mode	(10^{-3})	(MeV)	$(10^{-7}GeV)$		T < C	T > C
D^0	$\pi^+\pi^-$	1.45 ± 0.05	921.9	4.70 ± 0.08	-(T'+E')	2.24	2.24
	$\pi^{0}\pi^{0}$	0.81 ± 0.05	922.6	3.51 ± 0.11	$-(C'-E')/\sqrt{2}$	1.36	1.35
<	K^+K^-	4.07 ± 0.10	791.0	8.49 ± 0.10	(T' + E')	1.92	1.93
	$K^0 \overline{K}^0$	0.32 ± 0.02	788.5	2.39 ± 0.14	0	0	0
D^+	$\pi^+\pi^0$	1.18 ± 0.06	924.7	2.66 ± 0.07	$-(T'+C')/\sqrt{2}$	0.88	0.89
	$K^+\overline{K}^0$	6.12 ± 0.22	792.6	6.55 ± 0.12	(T' - A')	0.73	6.15
D_s^+	$\pi^+ K^0$	2.52 ± 0.27	915.7	5.94 ± 0.32	-(T'-A')	0.37	3.08
	$\pi^0 K^+$	0.62 ± 0.23	917.1	2.94 ± 0.55	$-(C'+A')/\sqrt{2}$	0.86	0.85

Cabibbo doubly supressed $s \leftrightarrow d$ exchange

 $\frac{\Gamma(D^0 \to K_s \pi^0) - \Gamma(D^0 \to K_L \pi^0)}{\Gamma(D^0 \to K_s \pi^0) + \Gamma(D^0 \to K_L \pi^0)} = 0.108 \pm 0.025 \pm 0.024$ Prediction R(D⁰) = $2 \tan^2 \theta_c = 0.107$

 $\frac{T}{2}$ $\frac{C}{2}$ $\frac{A}{2}$ 818 pb⁻¹

Cabibbo favored

Meson	Decay Mode	B(%)(CLEO-c)	Rep.	Predicted B (%)
D ⁰	K ⁻ π ⁺	3.9058±0.077	T+E	3.905
	$\overline{K}{}^{0}\pi^{0}$	2.38±0.085	(C-E)/√2	2.347
	κ¯ ^ο η	0.962±0.060	C/√3	1.002
	κ οη'	1.900±0.108	-(C+E)/√6	1.920
D+	Κ ⁰ π ⁺	3.074±0.097	C+T	3.090
Ds	kok+	2.98±0.17	C+A	2.939
	$\pi^+\eta$	1.84±0.15	(T-2A)/√3	1.810
	π +η'	3.95±0.34	2(T+A)/√6	3.693

Ds->tau nu

Sheldon Stone Jochen Dingfelder

C.Diaconu, Moriond QCD 2010

C.Diaconu, Moriond QCD 2010

Belle: hadronic penguins

Vub form factors

Tevatron: b-baryons

Mirco Dorigo

Measurements complete the heavy baryons knowledge Discrepancy in Omega_b needs further investigation

Advances in lifetimes measurements

 $B^+ \to J/\psi K^+, B^0 \to J/\psi K^{*0}, B^0 \to J/\psi K^0_*, \text{ and } \Lambda^0_h \to J/\psi \Lambda^0$

Bs mixing at Tevatron

Tevatron combination: probability of observed deviation from SM = 3.4% (2.12 σ)

Rare Decays at Tevatron

Dmitri Tsybychev

Br(B⁰_s $\rightarrow \mu^{+}\mu^{-}$) = (3.42 ± 0.54)x10⁻⁹ Br(B⁰_d $\rightarrow \mu^{+}\mu^{-}$) = (1.00 ± 0.14)x10⁻⁹ s⁻¹

 $B^0_{s} \rightarrow \mu^+ \mu^ B^0_{d} \rightarrow \mu^+ \mu^-$ 3.7 fb⁻¹ CDF < 4.3x10⁻⁸ < 7.6x10⁻⁹

- 90% C.L.
- BR(B⁰ → e⁺e⁻) = 8.3 x 10⁻⁸
- BR(B⁰ _s→e⁺e⁻) = 2.8 x 10⁻⁷
- 90% C.L.
- BR(B⁰ →e⁺μ⁻) = 6.4 x 10⁻⁸
- BR(B⁰_s→e⁺μ⁻) = 2.0 x 10⁻⁷

Constrains on new phyiscs from rare decays

LHCb can discover signal down to <2 x 10-8 in 2010-11. (G.Wlikinson)

The experimental frontiers of the high energy physics

Precision

Proton structure, strong coupling, CP violation, decays, resonances, diffraction

Particles cross sections

Multiple interactions tested at Tevatron

Precise tests for MI phenomenology, improve LHC analyses (hopefully)

Jet energy loss at RHIC

Nathan Grau

Jet reconstruction at RHIC

Sevil Salur

Jet axis

R(2)

R(1)

 $\omega^{\min}(2)$

Probes of complexity

Torsten Dahms

Dielectron continuum in p+p and Au+Au Collisions at RHIC

Ending ("experimental") remarks

- Combination
 - Independence versus combination
 - Experimental discrepancies should be solved as much as possible
- Precision
 - match precision in calculations and experiment
- Completion
 - Unique HEP programs arrive to an end, person power
 - Data preservation (dphep.org)
- Diversity
 - HEP (and QCD) is experiment driven, maintain capability to cover all areas

<u>Thanks</u>

- J. Tran Thanh Van for the Moriond Experience
- Organizing Committee: great set-up, nice whether (fixed during my plenary talk)
 - Thanks for the invitation!
- Program committee: best cocktail of talks I ever seen!
- Speakers for excellent talks

Particles multiplicities

CDF RunII Preliminary

CDF: Bs->ΦΦ and polarisation measurements

More luminosity will refine data/theory comparisons

B->VV

 $B^0 \to K^{*0} K^{*0}$

Different observations
Top properties

Veronica Sorin

SM expectation F0=0.7 F+=0

Di-Photon Measurements at Tevatron

L. Han

RESBOS with resummation demonstrates better agreement with data Test-bed for QCD with "clean" probes

Rare Decays at Tevatron

And measurements of the polarization components....

Compass: diffractive dissociation in 3 pions

Hadronic interaction studies ith NA48/2

Accurate study of low-energy hadronic Interactions thanks to the unprecedented Ke4 statistics available in NA48/2

<u>Mass spectrum of η'π[±]π</u> in J/ψ→γη'π[±]π[±], η'→ηπ[±]π[±]

H. Yang

The resonance X(1843) confirmed with BESIII data Structure in the mass spectrum above the resonance

Fit result(Statistic significance~21 σ): $M = 1842.4 \pm 2.8(stat)MeV$ $\Gamma = 99.2 \pm 9.2(stat)MeV$

<u>WW/WZ</u>

1fb-1 **at 7TeV ~ 3.5-5.5fb**-1 **at 2TeV** Tevatron still the place for SM dibosons in the coming years

ZZ -> four leptons

$$\sigma_{ZZ} = 1.56^{+0.80}_{-0.63}(stat.) \pm 0.25(syst.)$$

NLO: 1.4±0.1pb

Top pairs as QCD laboratory: tt+jets

