

Xavier Janssen On behalf of H1 and ZEUS Collaborations

1/24

Universiteit Antwerpen

Diffractive Physics at HERA

HERA collided 27.5 GeV electrons or positrons with protons of 460, 575, 820 and 920 GeV providing 0.5 fb⁻¹ to H1 and Zeus between 1992-2007 → Final precision data analyses are being delivered

Hadron Collider Physics Symposium Toronto, Canada, August 23-27, 2010

Deep-Inelastic Scattering and Diffraction

 Q^2 Photon vituality

x Bjorken-x

W Photon-proton cms energy W = Q2 (1/x-1)

Photon probes internal proton structure:

- \rightarrow Proton parton densities (see M. Wing)
- \rightarrow Inclusive Jets, charm and beauty
- \rightarrow Hadronic final states, fragmentation ...
- \rightarrow Electroweak: e^{\pm} polarisation at HERA-II
- \rightarrow BSM searches / limits
 - *x_{IP}* Momentum fraction of colour singlet exchange
 - $\boldsymbol{\beta}$ Fraction of exchange momentum of struck q
 - **t** 4-momentum transfer at proton vertex squared $x = x_{IP} \beta$

In 10% of events, proton stays intact and loses small momentum fraction

- ↔ Large rapidity gap / color singlet exchange (Pomeron at low x)
- \rightarrow Diffractive PDF's \rightarrow pQCD/PDF

2/24

 \rightarrow Jets, Vector Mesons, DVCS ...

X. Janssen - 08/23/2010 Diffractive Physics at HERA - HCP2010

Diffractive DIS

 $\sigma_r^{D(4)}(\beta, Q^2, x_{IP}, t) = F_2^{D(4)} - \frac{y^2}{v^+} F_L^{D(4)}$

 X_{μ} II

Rapidity gap

Diffraction: Selection methods

Large Rapidity Gap (LRG) Method:

- Request LRG in main detector $(3.3 < \eta < 7.5)$
- Meassure kinematic from e^{\pm} and X system \rightarrow No access to *t*
- Some proton dissociation contamination
 - \rightarrow Corrected up to $M_Y < 1.6 \text{ GeV}$

- Flat (vs) $\ln M_x^2$ for diffractive events
- Non diffractive events substracted from fits
 - \rightarrow Small proton dissociation contamination
 - \rightarrow No access to *t*

Tagged Leading Baryons Method:

H1 (FPS) and ZEUS (LPS) have Proton Spectrometers (and Forward Neutron Calorimeters)

- Free of proton dissociation background
- Proton 4-momentum measurement $\rightarrow t$, x_{IP}
- Lower statistic (acceptance)

\rightarrow H1 VFPS @ HERA-II: Larger acceptance in x_{IP} & t

Leading Proton Results : $\sigma_r^{D(4)}(\beta, Q^2, x_{IP}, t)$

10 X

Diffractive Physics at HERA - HCP2010

Leading Proton Results : $d\sigma_r^D/dt \sim \exp(-bt)$

5/24

ZEUS

→ H1 and ZEUS results compatible (but ZEUS slightly higher than H1) → *b*-slopes ~ 6-7 GeV² for small x_{IP} (Pomeron exchange region)

 \rightarrow At high *x_{IP}*, Reggeon exchange contribution leads to smaller *b*-slopes

First H1 VFPS Results : $\sigma_r^{D(3)}$

6/24

Correction for proton dissoc. contamination below $M_Y < 1.6$ GeV estimated from FPS/LRG ratio

→ Extended range in x_{IP} vs FPS + Good agreement with FPS: ratio VFPS / FPS = 0.96 +/- 0.02 (stat) +/- 0.11 (syst) +/- 0.08 (norm)

 \rightarrow Agreement with H1 LRG data (and DPDF QCD fit) in most bins.

 \rightarrow Positive scaling violations in most β bins. \leftrightarrow Diffractive DIS dominated by gluon exchange !

LRG Results from ZEUS and H1: $\sigma_r^{D(3)}$

Diffractive Physics at HERA - HCP2010

7/24

ZEUS

Comparisons between Methods

6 GeV²

 $8 \, GeV^2$

14 GeV²

GeV²

27

Q²=55 GeV²

β=**0.400**

20_{0 c}

β=**0.471**

¢. ¢.

β=**0.609**

[₽]₽₽₽₽

β=**0.750**

β=**0.833**

10⁻²

XIP

β=0.143

β=**0.182**

β=**0.280**

β**=0.429**

β**=0.556**

°,

10⁻² •

10⁻⁴

≞_{∎¢},

₽<mark>₽</mark>₽₽₽₽₽

X. Janssen – 08/23/2010 Diffractive Physics at HERA – HCP2010

Factorization and DGLAP pQCD Fits

ZÉUS

10/24

• QCD hard scattering collinear factorization theorem (Collins) at fixed *x*_{*IP*} and *t*

 \rightarrow DGLAP applicable for Q2 evolution \rightarrow Can define diffractive parton densities:

 $d\sigma_i = f_i^D(\beta, Q^2, x_{IP}, t) \otimes d\hat{\sigma}^i(\beta, Q^2)$

NB: Reggeon contribution at high x_{IP} parametrized according to π pdf's

• "Proton vertex" factorization of β , Q^2 from x_{IP} , t (and M_Y) dependences

No form basis in QCD !

→ Can define Pomeron parton densities: $f_i^D(\beta, Q^2, x_{IP}, t) = f_{IP/p}(x_{IP}, t) \times f_i^{IP}(\beta, Q^2)$

Pomeron flux $f_{IP/p}$ modelled by Regge theory:

$$f_{IP/p}(x_{IP},t) = \frac{e^{b_{IP}t}}{x_{IP}^{2\alpha_{IP}(t)-1}} \qquad \alpha_{IP}(t) = \alpha_{IP}(0) + \alpha'_{IP}t$$

11/24

Assuming vertex factorization for IP:

→ Perform Regge fit with as free parameters in every (β , Q2) bins: $\alpha_{IP}(0)$, α_{IP}' , b_{IP} , n_{IR} and $F_2^{IP}(\beta, Q^2)$ and fix $\alpha_{IR}(0)$, α_{IR}' , b_{IR} and $F_2^{IR}(\beta, Q^2)$

 $\rightarrow \alpha_{IP}(0) , \alpha_{IP}' , b_{IP} \text{ independent of } Q2$ $\rightarrow \text{Supports vertex factorization}$

For H1 FPS fit: $\alpha_{IP}(0) = 1.10 \pm 0.02 \text{ (exp.)} \pm 0.03 \text{ (model)}$ $\alpha'_{IP} = 0.04 \pm 0.02 \text{ (exp.)} \pm 0.03 \text{ (model)} \text{ GeV}^{-2}$ $B_{IP} = 5.7 \pm 0.3 \text{ (exp.)} \pm 0.6 \text{ (model)} \text{ GeV}^{-2}$ $\rightarrow \alpha_{IP}(0)$ consistent with soft IP (1.08) $\rightarrow \alpha_{IP}'$ smaller than soft IP in hadron-hadron

Diffractive Parton Densities

12/24

Fit to ZEUS LRG+LPS: Only data $Q^2 > 5 \text{ GeV}^2$

 \rightarrow quark PDFs well constrained

- \rightarrow Large uncertainties for gluon PDF at large z
- \rightarrow Not possible to do a fit to low Q² data !
- N.B.: Similar results from fits to H1 LRG data, see backup slides

quarks: $z \sum (z, Q_0^2) = A_q z^{B_q} (1-z)^{C_q}$ **gluons**: ZEUS S $zg(z, Q_0^2) = A_g z^{B_g} (1-z)^{C_g}$ ZEUS C $zg(z, Q_0^2) = A_g$

 $\alpha_s(M_z) = 0.118$ $Q_0^2 = 1.8 \, GeV^2$ $\mu_F = \mu_r = Q$ Heavy quarks: general-mass VFNS scheme $m_c = 1.35 \, GeV$, $m_b = 4.3 \, GeV$

 \rightarrow quark:gluon ratio ~ 70%/30%

First F_L^D Measurement

13/24

 F_L^D probes directly the diffractive gluon density $\sigma_r^{D(3)}(\beta, Q^2, x_{IP}) = F_2^{D(3)} - \frac{y^2}{Y^+} F_L^{D(3)}$ \rightarrow Sensitivity to F_L^D at high y (low E_e ~ 3-10 GeV) \rightarrow Vary E_p to change y at fixed β, x_{IP} and Q^2 \rightarrow Low E_p run: 11 pb⁻¹ @ 575 GeV, 6 pb⁻¹ @ 460 GeV

Diffractive Dijets in DIS

ZIP

Combined QCD Fits with Diffractive Dijets

ZEUS

 No Change in quark PDF's
 Gluon PDF well constrained at high z

 Similar description of Inclusive DIS (Dijet fit similar to one of the standalone fits)

Selection: 1 Central Jet + 1 Forward Jet + proton in FPS

 $\begin{array}{ll} Forward \ jet: \ pt > 4.5 \ GeV, & 1 < \eta_{fwd} < 2.8 \\ Central \ jet: & pt > 3.5 \ GeV, & -1 < \eta_{cen} < \eta_{fwd} \\ 2 < Q^2 < 110 \ GeV^2, & |t| < 1 \ GeV^2, \ x_{IP} < 0.1 \end{array}$

 → Search for "hard" pQCD contributions breaking DGLAP p_T ordering at low x (BFKL ...)
 → No evidence for effects beyond NLO DGLAP:

Diffractive Physics at HERA - HCP2010

QCD Factorization Breaking in pp

Diffractive Dijet Photoproduction $\rightarrow S^2 @$ HERA

ZEUS $[E_T(jet1) > 7.5 \text{ GeV}] \rightarrow \text{No evidence for any gap destruction}$ H1 $[E_T(jet1) > 5 \text{ GeV}] \rightarrow \text{Survival probability} < 1 \text{ at } 2\sigma \text{ significance}$ $\sigma(\text{H1 data}) / \sigma(\text{NLO}) = 0.58 \pm 0.12 \text{ (exp.)} \pm 0.14 \text{ (scale)} \pm 0.09 \text{ (DPDF)}$

→ Gap survival has no or little dependence on x_{γ} → H1 vs ZEUS : Hint on a dependence on jet E_T ?

Diffractive Dijet Photoproduction ...

19/24

H1 data / theory

- 💶 NLO H1 2006 Fit B, KKMR suppressed×(1+διωr)
- data correlated uncertainty
- ----- NLO H1 2006 Fit B, resolved \times 0.34 \times (1+ δ m)

- Hadronization corrections migrations in x_{γ}
- NLO corrections mix direct and resolved
- Refined Gap Survival Model (KMKR) [arXiv:0911.3716]
- Direct contribution remains unsuppressed
- Suppression factor 0.34 applies to Hadron-like (VMD) part of photon structure only (low xγ < 0.1)
- Point-like (anomalous) part of photon structure has less suppression (~0.7-0.8)
- → KMKR model (+experimental effects) accounts for flat with x_γ and smaller Rapidity Gap Survival Probability
- \rightarrow KMKR model includes some E_T dependence allowing to describe both H1 and ZEUS

→ Progress in Diffractive Dijet Photoproduction and Rapidity Gap Survival Probability understanding at HERA

Beyond the diffractive peak: Leading Baryons

Leading Protons

- Diffractive peak at $x_L (= 1-x_{IP}) = 1$
- Flat at $x_L < 0.95$
 - $\rightarrow \frac{\text{Regge analysis:}}{\text{Low } x_L \text{ dominated by isoscalar meson} \\ \text{exchanges with } \alpha_{IR}(0) \sim 0.5: \omega, f \dots \\ \text{(rather than isovector exchange: a, p ...)}$

- Going to 0 at $x_L (= 1-x_{IP}) = 1$
- Drop at $x_L = 0.7$ due to acceptance
 - \rightarrow Large $x_{L_{:}}$ due to π exchange $\rightarrow \alpha_{\pi}(0) \sim 0$
 - \rightarrow Low $x_{L:}$ standard baryon fragmentation

Leading Neutron Structure Function

$$\sigma_r^{LN(3)}(\beta, Q^2, x_L) = F_2^{LN(3)} - \frac{y^2}{Y^+} F_L^{LN(3)}$$

In particle exchange picture expect proton vertex factorization: $F_{2}^{LN(3)}(\beta, Q^{2}, x_{L}) = f(x_{L}) \cdot F_{2}^{LN(3)}(\beta, Q^{2})$ Fit $F_2^{LN(3)}(\beta, Q^2, x_L)$ by power law:

 $F_2^{LN(3)}(\beta, Q^2, x_L) \sim \beta^{-\lambda}$

- λ is independent of x_L \rightarrow consistent with vertex factorization
- λ increases with Q^2 : from 0.23 to 0.3 x = 0.82 \rightarrow similar Q^2 evolution of $F_2^{LN(3)}$ and proton structure function F_{2} x₁ = 0.91

$F_2^{LN(3)}(\mathbf{Q}^2,\beta,\mathbf{x}_1)$

 $Q^{2} = 7.3 \text{ GeV}^{2} Q^{2} = 11 \text{ GeV}^{2} Q^{2} = 16 \text{ GeV}^{2} Q^{2} = 24 \text{ GeV}^{2} Q^{2} = 37 \text{ GeV}^{2} Q^{2} = 55 \text{ GeV}^{2} Q^{2} = 82 \text{ GeV}^{2}$

ZEUS

Leading Neutron Structure Functions

In particle exchange picture expect proton vertex factorization: $F_2^{LN(3)}(\beta, Q^2, x_L) = f(x_L) \cdot F_2^{LN(3)}(\beta, Q^2)$ Fit $F_2^{LN(3)}(\beta, Q^2, x_L)$ by power law:

 $F_2^{LN(3)}(\boldsymbol{\beta}, \boldsymbol{Q}^2, \boldsymbol{x}_L) \sim \boldsymbol{\beta}^{-\lambda}$

- λ is independent of x_L \rightarrow consistent with vertex factorization
- λ increases with Q^2 : from 0.23 to 0.3 \rightarrow similar Q^2 evolution of $F_2^{LN(3)}$ and proton structure function F_2
 - \rightarrow leading neutron production in the proton fragmentation region in DIS is insensitive to Q^2 and x

LN: Pion Structure Function

23/24

$$\sigma_r^{LN(3)}(\beta, Q^2, x_L) = F_2^{LN(3)} - \frac{y^2}{Y^+} F_L^{LN(3)}$$

Assuming proton vertex factorization and the dominance of π +-exchange at high x_L, we estimate pion structure function at low x from measured F₂^{LN(3)} at 0.68<x_L<0.77:

$$F_{2}^{LN(3)}(\beta, Q^{2}, x_{L}) = \Gamma_{\pi}(x_{L}) \cdot F_{2}^{\pi}(\beta, Q^{2})$$

where Γ_{π} is the integrated pion flux:

$$\Gamma_{\pi} = \int f_{\pi/p}(x_L = 0.73, t) dt$$

BUT several parametrization for Γ_{π} \rightarrow 30% normalization uncertainties

- \rightarrow F^{π}₂ following parametrization but a bit too low (30% uncertainties !)
- \rightarrow F^{π}₂ following inclusive F₂ Q2 depend. \rightarrow Universality of structure function at low x

CONCLUSIONS

Diffraction has been explored in details by the H1 and ZEUS experiments at HERA providing an unique sensitivity to strong color-singlet exchange in pQCD regime Inclusive Diffraction and Diffractive PDFs:

- First H1 VFPS results (and recent FPS and LRG data)
- Proton Vertex Factorization holds with $a_{IP}(0) \sim 1.10$ and b-slope $\sim 6-7$ GeV²
- Relative agreement between H1 and ZEUS (large normalization uncertainties)
 - \rightarrow Diffractive PDF's well constrained by combined fits with diffractive dijets in DIS

QCD Factorization Tests:

- QCD factorization broken in pp diffractive interactions:
 - \rightarrow Rapidity Gap Survival Probability at Tevatron: S² ~ 0.1
- At HERA, diffractive dijets in photoproduction shows smaller (or no) factorization breaking (S² ~ 0.3 expected for resolved photons)
 - \rightarrow Progress in theory side !

Leading Neutrons:

- Originating from both fragmentation (low x_L) and pion exchange (large x_L)
- Precise measurement of LN structure functions and F_2^{π} extracted
- \rightarrow Input to diffraction, multi-parton interactions, LN studies ... @ LHC

BACKUP SLIDES

- Fit H1 LRG data in fixed x_{IP} binning using NLO DGLAP evolution of DPDFs (massive scheme) to describe x, Q² dependences
- Proton vertex factorization framework assumed
- Fit all H1 LRG data with $Q^2 \ge 8.5 \text{ GeV}^2$, $M_X > 2 \text{ GeV}$, $\beta \le 0.8$ — Ensure stability of fit with variations of kinematic boundaries
- Parametrize: quark singlet: $z\Sigma(z,Q_0^2) = A_q \ z^{B_q} \ (1-z)^{C_q}$
 - gluon density: $zg(z, Q_0^2) = A_g (1 z)^{C_g}$ gluon insensitive to B_g
 - $\alpha_{I\!\!P}(0)$ (describes $x_{I\!\!P}$ dependence)
- Fix: use world average for $\alpha_s(M_Z) = 0.118$
 - \bullet sub-leading ${I\!\!R}$ flux parameters taken from previous data
 - sub-leading $I\!\!R$ PDFs from Owens- π but free normalization
- Small number of parameters in DPDFs
 - \longrightarrow Need to optimize Q_0^2 wrt χ^2

H1 LRG QCD Fit Results

27/24

- Fit A: $Q_0^2 = 1.45 \ {
 m GeV}^2$ $\chi^2 \sim 158/183 \ {
 m dof}$
 - Singlet constrained to $\sim 5\%$
 - Gluon to $\sim 15\%$ at low z
 - Gluon error band blowing up at highest *z*

Fit B:
$$zg(z,Q_0^2) = A_g$$

 $\chi^2 \sim 164/184 \text{ dof}$

- Singlet very stable
- Gluon similar at low z
- Gluon change at high z

 \longrightarrow New Diffractive PDFs available \longrightarrow Lack of sensitivity to gluon at high z

Pomeron Trajectory from H1 LRG QCD Fit

- $\alpha_{I\!\!P}(0) = 1.118 \pm 0.008 (\text{exp.})^{+0.029}_{-0.10} (\text{th.})$
- Dominant uncertainty from strong correlation with $\alpha'_{I\!\!P}$
- No variation in Q^2 or β \rightarrow support p vertex factorization
- Consistent with FPS result:

$$\alpha_{IP}(0) = 1.10 \pm 0.02 \text{ (exp.)} \pm 0.03 \text{ (model)}$$

 $\alpha'_{IP} = 0.04 \pm 0.02 \text{ (exp.)} \pm 0.03 \text{ (model)}$ GeV

$$B_{IP} = 5.7 \pm 0.3$$
 (exp.) ± 0.6 (model) GeV⁻²

Regge fit to HERA-1 FPS data

 As there are only singlet quarks, the evolution eq. for F₂^D is

- At low β , evolution driven by $g \rightarrow qq$
 - \longrightarrow strong sensitivity to gluon
- At high β, relative error on derivative grows, q → qg contribution becomes important → sensitivity to gluon is lost

Log. Derivative wrt Q^2

ZEUS

Diffractive Charged Current Cross Section

Sensitive to flavour decomposition of quark singlet (unconstrained by Neutral Currents)

Agreement with H1 2006 DPDFs (assumes $u = d = s = \overline{u} = \overline{d} = \overline{s}$) but statistical precision very limited so far

31/24

 \rightarrow Fit quality bad below 5 GeV²

ZEUS DPDF S: Results (2)

32/24

Comparison of ZEUS DPDF S Fit to ZEUS LRG and FPS data

LRG-Dijets Fit Results

X. Janssen - 08/23/2010 Diffractive Physics at HERA - HCP2010

ZEUS DPDF SJ: Results

QCD Fits: H1 vs ZEUS

- Differences ZEUS // H1 fits :
- VFNS // FFNS.
- $Q^2 > 5 \text{ GeV}^2 // Q^2 > 8.5 \text{ GeV}^2$.
- *M_N* = *m_p* // *M_N* < 1.6 GeV; hence scaling 0.81.

Comparison :

- Agreement in shape for $\beta < 0.2$; ZEUS fit higher.
- At higher β and where extrapolated agreement worsens.
- Reflects degree of consistency between H1 and ZEUS data.

M. Wing, DIS2010

Leading Neutron Structure Functions

In particle exchange picture expect proton vertex factorization: $F_2^{LN(3)}(\beta, Q^2, x_L) = f(x_L) \cdot F_2^{LN(3)}(\beta, Q^2)$ Fit $F_2^{LN(3)}(\beta, Q^2, x_L)$ by power law:

 $F_2^{LN(3)}(\boldsymbol{\beta}, \boldsymbol{Q}^2, \boldsymbol{x}_L) \sim \boldsymbol{\beta}^{-\lambda}$

- λ is independent of x_L \rightarrow consistent with vertex factorization
- λ increases with Q^2 : from 0.23 to 0.3 \rightarrow similar Q^2 evolution of $F_2^{LN(3)}$ and proton structure function F_2
 - \rightarrow leading neutron production in the proton fragmentation region in DIS is insensitive to Q^2 and x

BACKUP SLIDES: VECTOR MESON PRODUCTION AND DVCS

Diffractive Vector Meson Production and DVCS

 $e + p \rightarrow e + VM (= \rho, \phi, J/\psi, ..., or \gamma) + Y (or p)$

2 Photon Virtuality

Photoproduction: $Q^2 \sim 0$

 $W = \gamma p$ CMS energy

4-momentum transfer squared

Momentum fraction of the colour singlet exchange

Xavler Janssen – p. 2

VM theory: Perturbative QCD approaches

Dipole approach (k_t factorisation) Collinear factorisation theorem

$$\mathcal{A} \,=\, \Psi^{\gamma}_{qar{q}} \otimes \sigma_{qar{q}-p} \otimes \Psi^{m{V}}_{qar{q}}$$

Scanning radius decrease with increasing Q^2 or $M_V^2
ightarrow \mu^2 = z(1-z)(Q^2+M_V^2)$ $Q^2 \sim q^2 \sim q^2$ $\rightarrow \sigma_L \propto \frac{Q^2/M_V^2}{(Q^2 + M_V^2)^4} [\alpha_s(\mu^2) G(x,\mu^2)]^2$ with $z\simeq 1/2
ightarrow \mu^2 \simeq 1/4 (Q^2+M_V^2)$ $\rightarrow \sigma_T \propto rac{1}{(Q^2 + M_V^2)^4} [lpha_s(\mu^2) G(x,\mu^2)]^2$ with z = 0, 1 endpoints contributions → hard scale damped

$\mathcal{A}_L = f(x, x', t, \mu) \otimes H \otimes \Psi^V$

where f_i : non-forward PDF ($x' \neq x$) → Generalized Parton Density

Theorem proven for σ_L ; often assumed for σ_T Collins, Frankfurt & Strikman [hep-ph/9611433]

Dipole - Saturation: Kowalski, Motyka, Watt (KMW) [hep-ph/0606272] Marquet, Peschański, Soyez (MPS) hep-ph/0702171 Dipole - k_T factorisation: Ivanov, Nikolaev, Savin (INS) [hep-ph/0501034] Collinear - GPD: Goloskokov, Kroll (GK) Parton hadron duality: [hep-ph/07083569] Martin, Ryskin, Teubner (MRT) [hep-ph/9609448]

> X. Janssen - 08/23/2010 **Diffractive Physics at HERA - HCP2010**

Soft to hard transition: mass

Low mass $(\rho, \phi, \omega; M_V^2 \simeq 1 \text{ GeV}^2)$: no pert. scale —>weak energy dep. (soft regime)

High mass (J/ψ,
𝔥): pert. scale
→strong energy
dep. (hard regime)

Large mass (\Upsilon) important skewing effect

Upsilon Photoproduction

W dependence of the cross section is in agreement with pQCD models including skewing, i.e. $x_1 \neq x_2$

Q^2 dependence

- High precision for elastic cross-sections
- First φ p-diss.
 cross-section
- H1 Zeus relative agreement

Test of vertex ("Regge") factorisation:

DIS 2010, 19-23 April 2010, Firenze, Italy

- p.diss/el : no Q² dep.
- t-depend. : no Q² dep.
 - \rightarrow vertex factorisation

Soft to hard transition - $\sigma(W)$

Common hardening of α_{IP}(0) with Q² + M² for all VM and DVCS ⇒ Transition from soft to hard regime with μ² = (Q² + M²)/4
Soft contributions (in σ_L?) up to μ² ~ 5 GeV² for ρ and φ

Soft to hard transition - t dependences

Shrinkage : α'_{IP} measurements

Deep Virtual Compton Scattering

DVCS: t slope and Beam Charge Asymmetry

DVCS: QCD interpretation

ື້ ອູ 100 ທ

80

60

40

20

6 5

R(a²)

• correct Q^2 dependence of the propagator and of bin the cross section:

$$S = \sqrt{\frac{\sigma_{DVCS} \; Q^4 \; b(Q^2)}{(1+\rho^2)}} \label{eq:s_eq}$$

skewing factor: around 2

$$R = \frac{\mathcal{I}m \ A(\gamma^* p \to \gamma p)}{\mathcal{I}m \ A(\gamma^* p \to \gamma^* p)} = \frac{4\sqrt{\pi} \sigma_{DVCS} \ b(Q^2)}{\sigma_T(\gamma^* p \to X) \ \sqrt{(1+\rho^2)}} \Rightarrow \text{ important skewing factor}$$

 $\Rightarrow Q^2$ evolution close to the one of DIS (pure DGLAP)

H1 DVCS Analysis HERA II (e^{*}p)

HERA II e p (prelim.)

GPD model (Freund et al.)

10

H1

Q² [GeV²

