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Multi-jet measurements at HERA

Three- and Four-jet Production at Low x at HERA.
By H1 Collaboration Eur.Phys.J.C54:389-409,2008; arXiv:0711.2606 [hep-eX]
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H1 detector jet .
o L HERA jet measurement covers ~4
T O ST pseudorapidity units - we expect
= S typically no more than 3-4 hard
o emissions

forward region

central region

At HERA 3, 4 jets are at the limit of hard radiation phase space at small x
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Physics motivation of this measurement

dCheck in detail theory predictions of parton g \\
level calculations provided by NLOJET++ (fixed & a7
order NLO for 3-jet inclusive sample) — q

UNLOJET++ is theory based on DGLAP
approximation, which assumes ordering of > K
parton transverse momenta along cascade. K
QUESTION : is DGLAP good enough in all

available for 3-jet inclusive phase space at p

HERA ?

dCheck in detall predictions of LO+parton shower generators with k-
ordered (RAPGAP) and unordered (Color Dipol Model) cascade

» e

0l

din contrast to inclusive jets and di-jets three-jet final states require at
least one gluon radiation in addition to y*g — qQg 2 3-jet sample
ideally suited to study gluon emissions and underlying parton dynamics
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NLO parton level MC

N LOJET++ (Z.Nagi,Z.Trocsanyi)
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*NNLO calculation for dijets
*NLO calculation for trijets
L O calculation for four-jets

*Trijet calculation contains o4 In(1/x) term
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QCD models based on DGLAP and Color Dipole Model (CDM)

— —1 *RAPGAP : implements DGLAP evolution with
- DE\ k, ordering
%ﬁ _ {— |*RAPGAP RESOLVED: also evolution from
/e | hadronic photon” side, in a sense breaks
—E=  —(== | ordering, but within DGLAP scheme

*ARIADNE: implements Color Dipoles Model:

*Quasi-classical color dipoles radiate independently

*No k; ordering

7/15/2009 J.Turnau EPS 2009 H1 3-4-jets 5



Event and jet selection

H1 detector jet ‘ Event selection
et S i 5 GeV2< Q2< 80 GeV?
N e i . 104 < xy; <102, 0.1<y<0.7
e+ " e A B ™ ‘,‘,'.E'r. :
E=27.6 GeV¥ Jet selection
jet ':!-:E - Jets formed from the tracks and clusters

(incl. &, algoritm in y*p CMS, dist. par.=1)

central region = 23 jetswithp*, >4 GeV
(good correlation between
jets@detector level and

forward region

Data sample jets@hadron/parton level)
= p*L,tpfL,>9GeV
Integrated lumi 44.2 pb! (to compare the data to
the NLO(O(a,%)) calculat.)
384000 events > 3 jets * -1<n <25 inlab. frame
: * 21 central jet with -1<n;<1.3
6000 events > 4 jetS (quantities with * measured in y*p CMS)
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Observables describing 3-jet system

Three—-jet Rest Frame

/2 Ep>E»E)

Ve ‘_3

Scaled X' E

energies i E1'+ E'2 n Eé

Two angles 6 and  orientation of 3-jet
system with respect to colliding boson-
parton system

Jet transverse momenta pr,; > pr,* > pPrg*
N y'p system

Jet pseudorapidities n; n, n5 in laboratory
system
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3-jet cross section and jet multiplicity distribution
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Hadronisation corrections

uncertainty (model dependence)

*3-jet cross section well described by NLO(o..%)
*NLO(a,,®) underestimates 4-jet rate by factor 2.6

*CDM (unordered radiation) provides excellent
description of jet multiplicity distribution up to N, = 6

*RAPGAP (ordered parton shower) fails to describe
jet multiplicity distribution, underestimates 4-jet rate
by factor 2.9

uncertainty in quadrature

} Scale + hadronisation
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Bjorken-x distribution
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*Here and in all the other plots NLO(a. %) is significant improvement w.r.t. NLO(o..?)

*At very small x < 20104 NLO(a..®) undershoots the data (upper edge of theoretical
error band). Not observed or less accentuated in previous analyses with restricted
phase space (Mg, >25 GeV or higher E; — jet cut)

*RAPGAP falils to describe both shape and normalization ( plot normalized by 1.55)

*CDM provides excellent description in shape and fair in normalization (here 1.05)
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3-jet inclusive sample : pseudorapidities in laboratory
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*Data described within large theoretical uncertainties, but tendency to
underestimate cross section at large positive pseudorapidities

(forward jets)

sImprovement of O(a, %) w.r.t. O(a?) increases with pseudorapidity
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3-jet system variables X, X, ,y’, 6" in NLO(a%3)
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*Good description apart from slight deficit in
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doldX’, [pb]

3-jet system variables X, ,cos 6’ and p;" in MC
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*CDM provides in general good description of 3-jet system except except
transverse momentum of the leading jet

*RAPGAP in most cases fails to descibe shapes of the distributions
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3-jet sample subsamples

Central jets: N
< et < e
2 forward + 1 central =
Forward jets: _ -
neil > 1.73 Jet =~
Tfil = (.055 Jet
12 - | \
Jet _
. 1 forward + 2 central e
All jets: ==
B > 4 GeV /

*The fraction of jets due to gluon radiation is expected (MC) to be larger
for forward jets than for central jets

f+2c sample will have many events with a single radiatied gluon (3-jet)

«2f+1c sample has a larger fraction with 2 radiated gluons (4-jet—=>L0O)



Bjorken-x distribution of forward jet subsamples

1 forward jet + 2 central jets 2 forward jets + 1 central jet
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*NLO(a %) provides rather good description of 1f+2c sample

For 2f+1c subsample dramatic improvement from O(a..?) to O(a (3). The
large remaining deficiency for x < 2¢10 is significant

«2f+1c sample in large part is process with 2 radiated gluons = O(o. %) is
effectively LO calculation
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do/dp*;, [pb- GeV™"]
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doldX’, [pb]

Four-jet sample: comparison with MC
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Summary and conclusions

*Remarkable success of NLO(a %) calculation by NLOJET++

*Huge improvement w.r.t. to O(a.?) theory especially for large
positive rapidities and small x

*There are regions of phase space where fixed order NLO DGLAP
calculation O(c..3) cannot describe the HERA data

L O+ p;- unordered parton shower (Color Dipol Model) describes
the data surprisingly well (except p; > 15 GeV)

L O+ pr-ordered parton shower (RAPGAP) fails to describe the data
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