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Parton kinematics at HERA & luminosi

Status: 1-July-2007
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Parton dynamics in pQCD

Perturbative expansion of parton evolution equations ~3%__ A__ In(Q2)™ In(1/x)"

Cannot be explicitly calculated to all orders

1. Fixed order calculations

2. Approximations ‘ resumming certain infinite subsets of terms
according to the phase space region

* DGLAP, collinear factorisation: Y (0 In Q?)"

Ordering in x, strong ordering in k;

* BFKL, k, factorisation: ) (a,In (1/x))"
Strong ordering in x, no k;ordering

*_CCFM, k,; factorisation: resum In Q* and In (1/x)

Angular ordering |:> k; non-ordering at small xg;
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Parton dynamics in pQCD
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DGLAP - approximation for high enough Q? and not very small x,
BFKL — approximation for small x,

DGLAP is successful in describing practically all existing data
DGLAP should experience problems at small x;,

If HERA X, are small enough to reveal these problems?
BFKL should replace DGLAP at small xg,

If BFKL accomplishes this for HERA?
At small x saturation is inevitable to preserve unitarity
@ How HERA can help us in understanding saturation?
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The main of characteristics of parton evolution for distinguishing between approaches
experimentally is the way of k; ordering

Three several realisations of breaking strict DGLAP k; ordering are compared with DGLAP:
@ Resolved photon, i.e. addition of DGLAP evolution from the photon side.

@ CCFM

@ Color Dipole Model where emitted gluons are in random walk in k;

DGLAP is represented by LO, NLO, NNLO fixed order calculations and LO matrix

element+parton showers Montﬁ_%ﬁg!r? EDS'09 3 July 09 CERN S



QCD calculations & Monte Carlo
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Disent, NLOjet++

EF"{}”X.

NLO Di-jet (ag?)

Lepto/Rapgap DIR

S
DGLAP
direct photon

Cascade

CCFM, angular ordering,
Unintegrated g(x,kt,u)

NLOjet++

L':+L;+

NLO Tri-jet (ag)

Rapgap DIR+RES

DGLAP, direct +

resolved photon

Ariadne

{

CDM
g’ ’(( |

Color Dipole Model (CDM)
Non- k, ordered partons
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Inclusive forward jets

Xpi small

evolution
from large
to small x

"forward’ jet

Jet selection

Q?[GeV?] 5.85 20 - 100
y 0.1-0.7 0.04-0.7
Xgj 104-410% | 4104-510°
Prjet [GeV] 3.5 5
Njet 1.74-2.79 2-43
(Bjet) (20°-7°) | (15.4°-1.6°)
Xjet >0.035 >0.036
r = prjei?/Q? 0.5-5.0 0.5-20

(piet 2 0Q? suppresses DGLAP evolution

et — E/E

jet proton

> Xg;€nhances BFKL evolution
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do / dxg; (nb)

Inclusive forward jets

H1 forward jet data
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LO DGLAP can hardly
produce forward jets
NLO DGLAP produces
too few forward jets

at low xg,

H1 forward jet data

) ~4- H1
£ 1000 E. scale uncert
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g =
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Xgi

I
CASCADE with set-1

produces more forward

jets than with set-2,
nevertheless too few
at the smallest xg,

do / dej (nb)

Both sets differ from data

in shape of distribution
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H1 forward jet data

0.001 0.002 0.003 0.004

RAPGAP-DIR is below
data by ~2 times
RAPGAP-DIR+RES
and CDM are similar
They are close to data
except at smallest x,
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Inclusive forward jets & CASCADE
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Distributions over different variables
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Same as in H1 comparison:
shapes of distributions are in
disagreement with data
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Trijet with a forward jet

Kinematic range the same as
for inclusive forward jets

Forward jet the same, E— s ~Aam
(E/*)?/Q? constraint excluded Jet gt}
Other
Two additional jets with Jets

Ejet > 5 GeV (ZEUS), 6 GeV (H1)

rlel < r]jet1 < rljet-z < r]forward-jet
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Trijet with a forward jet & fixed orderr QCD
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At small An,and An, jets are most forward. At small x5, space is left for additional

partons closer to the photon. NLOJET++ underpredicts >=4 partons=»below data
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Trijet with a forward jet & CASCADE
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Trijet with a forward Jet
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U LEPTO (RG-DIR)
much below data

0 RG-DIR+RES below
data at small An,

O CDM (ARIADNE-tuned)
describes data well
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Y =In1/x%

Dilute system

What is considered as HERA’s main

implications of saturation?
< Geometrical scaling

* Flatness of the ratio 0, /0.  in W (or 1/x)
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Geometrical scaling
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There is scaling at small x
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Exclusive data also exhibit geometrical scaling

Geometrical scaling
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Geometrical scaling -> saturation

Pro:
Geometrical scaling very naturally derives from
dipole with saturation

Contras:
d Seen in the phase space region where there
should be no saturation

J Could be obtained from linear BFKL and even
DGLAP (at Q2>5-10 GeV?)
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O diff/tot puzzle
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These plots could be measleading since This is not a low-x effect
provoke too plain treatment of saturation (seen at x=10-3-10-2)
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Saturation & CCFM

Saturation helps CCFM to solve problems in describing
experiment at low-x.

CASCADE does not describe ZEUS data on angular correlations in
three jets at small x.

After including saturation through absorptive boundary and refitting
gluon distribution to data on F, agreement is obtained
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Conclusions

@Forward jets at HERA could reveal failure of DGLAP at small x;,, i.e. large

deficiency of leading log resummed DGLAP, and smaller defiecency of NLO
DGLAP seen at the smallest x;,.

@Breaking of k;ordering by inclusion of resolved photon improves
description but fails at the smallest X, in forward jet+dijet case.

@ LO CCFM based MC, CASCADE, cannot fully describe data on forward jets,
other sets of uPDF are to be tried (and/or more serious problems show up,
i.e. lack of quarks).

= Only CDM (ARIADNE MC), featured by BFKL-like non-ordered in k; parton
cascade, is capable of successful description of the whole volume of data

on
forward jets. A problem could to be, nevertheless, that largely being based
on phenomenology ARIADNE is too free in tuning.

@ HERA cannot provide clear indications of saturation. Effects which are
considered as indications of saturation, geometrical scaling and constant
ratio of diffractive to total cross-sections vs x;,, unlikely should be

considered as such.
However, friendliness of dipole with saturation to HERA, that provides
easy and natural solution of almost every problem of HERA data description,

which otherwise requires sofisticated study with unclear results, could be

cenncidarad ae arcaiimaoant in favailir of catiiratian
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