

Philadelphia, August 3rd, 2008

QCD Experiment I Structure Functions

Cristinel DIACONU

CPP Marseille & DESY

Outline

- Introduction
- News from HERA:
 - combined data and fits, F_L , heavy flavours
- Constraints from pp collisions at Tevatron
 - jets, W/Z
- Spin Measurements
- Conclusions

Not discussed:Diffraction, VM, photoproduction, strangeness,... More on jets and photons in the next talk (C.Glasman)

HERA Collider: end in 2007

- HERA 1: 1992-2000 ~120 pb⁻¹/expt
 - HERA 2: 2003-2007

H1 ZEUS ~200 pb⁻¹ e⁻p ~300 pb⁻¹ e⁺p Low proton energy runs in 2007

End of beams: June 30, 2007

Deep-Inelastic Scattering (DIS)

Partons = Quarks (+ Gluons = QCD improved quark parton model)

$$Q^2 = -q^2 = -(k - k')^2$$

$$x = rac{Q^2}{2qP}$$

$$y = rac{Q^2}{xs}$$

Boson Virtuality=1/Resolving power

Momentum fraction of the scattered parton (Bjorken Scaling variable)

Inelasticity

DIS: Cross sections, structure functions, partons

$$e^{\pm}p : \tilde{\sigma}_{NC}^{\pm} = \frac{\mathrm{d}^2 \sigma_{NC}^{e^{\pm}p}}{\mathrm{d}x \mathrm{d}Q^2} \frac{xQ^4}{2\pi\alpha^2 Y_+} = \tilde{F}_2 - \frac{y^2}{Y_+} \tilde{F}_L \mp \frac{Y_-}{Y_+} x \tilde{F}_3, \quad Y_{\pm} = 1 \pm (1-y)^2$$

Leading Order picture of the proton

_

$$\begin{aligned} \mathbf{F_2} & \left[F_2, F_2^{\gamma Z}, F_2^Z \right] &= x \sum_q \left[e_q^2, 2e_q v_q, v_q^2 + a_q^2 \right] (q + \bar{q}) \quad \text{quarks} \\ \mathbf{F_3} & \left[x F_3^{\gamma Z}, x F_3^Z \right] &= 2x \sum_q \left[e_q a_q, v_q a_q \right] (q - \bar{q}) \quad \text{(valence) quarks} \\ \mathbf{F_4} & F_L = 0 (\sim x \alpha_s g \text{ at NLO}) \end{aligned}$$

CC: similar decomposition, but different quarks combinations accessed flavour sensitive (separate in e+p/e-p)

The PDF's mechanics: factorisation and evolution

DIS versus hadronic colliders

The data for PDF's

Process	Experiments	Constraints
DIS Collisions	H1,ZEUS	q,g
DIS Fixed Target	BCDMS, NMC,E665,SLAC	q,g
pp collision :jets, W/Z asym.	CDF,D0	g, u/d at high x
DIS neutrino-N	NuTev,Chorus,CCFR	q,g (s)
pp/pN Drell Yan	E605,E702, E866/NuSea	q,g

Global fits: determination of PDF's using the available data sets [Ex: MSTW08 uses 2743 measurements] MSTW, CTEQ, AKP, NNPDF (DIS data), HERAPDF (HERA averaged data, see later)

PDF4LHC: Common effort to converge on technical and physics issues

Difficult issues:

"model": low x, parametrisation, flavour/sea-valence decompositions...

data: "tensions" between data sets, tolerances

=> **PDF uncertainties** (determined in some global fits with $\Delta \chi^2 = ~40$ or more)

Predictions for LHC, some examples

Various fits give incompatible resultsPDF error dominant for some standard signalsThe variations in the P_T spectra due to PDF's can be limiting factor for non-resonant searches

More precise data for PDF's is the best medicine =>

DIS data from HERA

HERA e⁺p Neutral Current

H1-ZEUS cross section combinations

Coherent treatment of experimental effects in the average procedure (Lagrange multipliers method)

Improvements beyond the naively-expected sqrt(2): "cross calibration"

The common fit of the combined HERA I data

Improvement in precision is visible, originate mostly from data combination

The combined data compared to the fit

H1 and ZEUS Combined PDF Fit

Side by side with global fits

Improvement most notably at low x The data precision is driving the improvement Treatement of errors and parametrisation issues

Predictions for W/Z boson production at LHC

Without HERA Data HERA I data (one experiment) **HERA I combined** W+ Cross Section 2 z (assuming DGLAP) 2 1.5 · 15 1.5 **HERAPDF 0.1** 1 0.5 0.5 0.5 02 01 ±20% 01 0.05 ±10%0 al 0.05 ±10% -0.1 -0.05 -0.05 -0.1 4 -3 W rapidity W rapidity W rapidity

Only the fit uncertainty shown here, no model variations The step in experimental precision is significant ~2%

More HERA data to be included: low Q2, HERA II data high x/Q^2 , jets => ultimate precision A.Cooper-Sarkar and E.Perez

Proton's charm

Tags: D-mesons, lifetimeMore QCD into the gameFortunately, large quark mass helps

Produced via boson-gluon fusion =>sensitivity to the gluon

Precision to 5% (or less) possible =>challenges the theory

20

Proton's beauty

Longitudinal Structure Function F

$$\sigma_r = F_2(x, Q^2) - \frac{y^2}{Y_+} \cdot F_L(x, Q^2)$$

$$R = \sigma_L / \sigma_T = (F_2 - 2xF_1)/2xF_1 = F_L / 2xF_1$$

=0 for spin ¹/₂ partons in QPM (Callan-Gross)

Fundamental form factor of the proton Proportional to the gluon, important for PDF's **Discriminate between theoretical approaches**

 $O^2=20 \text{ GeV}^2$

Altarelli, Martinelli, 1978

10⁻¹

Direct F_L measurement

$$\sigma \sim F_2(x, Q^2) + f(y) F_L(x, Q^2)$$

Method:

keep x,Q² constant, vary y: ys=y's'=Q²/x

Vary s : Special Runs E_p=460,575 GeV

$$F_L \sim C(y) * \left(\sigma(E_p^1) - \sigma(E_p^2)\right)$$

Direct F measurement

F_L averaged in each Q² bin

H1 Preliminary F

Work ongoing to extend to lower Q²/x: test QCD, resummation, gluon

<u>Comparison with target data and indirect</u> <u>determinations</u>

The gluon "turn-on" at low x clearly visible

Jets production at Tevatron

Impressive achievement in energy scale control (1%) Sensitive to gluon at high x Precision with present global fits Included in MSTW

W asymmetry at Tevatron

Expect to improve PDFs improvements at high x

28

The gluon at high x

MSTW 2008 analysis (including CDF and D0 run II data jets, W/Z asymmetries)

New data prefer smaller gluon at high x

The proton spin

Polarised lepton beam, polarised (H,D,...) targets

Gluon contribution to the spin

Understanding the gluon is crucial for the proton structure

Extracted via semi-inclusive processes: meson production in polarised DIS and pp (RHIC)

Extreme options now excluded Extend x-range in pp at RHIC

LHC starts, precise data for proton "tuning" continue to come

However: the proton structure and QCD are (unsolved) fundamental questions More experiments planned: go deeper-inelastic (LheC) and extend spin studies (EIC)

Conclusions

- The study of the structure of baryonic matter is a scene of fast progress
 - inclusive DIS and PDF's, spin etc.
- Precision (H)ERA :
 - Fit of combined HERA data (HERAPDF 0.1)
 - First measurement of F₁ at low x at HERA

- Final analyses and H1/ZEUS combinations will lead to a significant step in precision
- Tevatron run II :
 - jets and W/Z studies offer new constraints on gluon, u/d at high x
- Precise PDF's are an important ingredient for LHC analyses
 - the perspectives are brilliant!

Thanks: A.Schoening, C.Vallee, E.Kinney, D.Lincoln, K.Hatakeyama, A.Hillerbrand, T. Haas, U. Klein, A. Guffanti, S.Blessing, M. Wobisch

Hard Diffraction at HERA

10% of DIS events are diffractive: produced via the exchange of an coulouless exchange

assuming factorisation: structure of the diffractive echnage

H1 and ZEUS M_N <1.6 GeV

H1 and ZEUS corrected to the same phase space Ready for combination,more data to come

Indirect Determination

$$\sigma_{r} = F_{2}(x, Q^{2}) - \frac{y^{2}}{Y_{+}} \cdot F_{L}(x, Q^{2}) \qquad \begin{array}{c} \text{see bending at high y} \\ \text{assume F2 -> extract FL} \end{array}$$

More charm with HERA II data

Photo-Produced Beauty

Recent precise measurements in agreement with theory

HERMES PRELIMINARY

Asymmetries

