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 Stands for “Hadron-Elektron-Ringanlage”

» (Was) an (electron-proton) ep-collider

Located in Hamburg, Germany

6.3 Km long

10-25m underground

Hosted H1, HERMES, HERA-B & ZEUS
Operation started in 1992

Final run on 30th June, 2007

Max p-beam energy, E: 920GeV
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Max e-beam energy, E, :27.5GeV
(Max ep COM energy: 318GeV)




Photoproduction

In contrast to DIS, photoproduction is an ep interaction mediated by a

quasi-real photon (7) - i.e. the virtuality, Q* = _(qyz) ~0

Unlike DIS:
e e’
- the “scattered” electron develops very little E, \{zl/
f
- Q” not a pQCD hard-scale (use e.g. jet- E; instead) —>— ¢
Low-Q2 (i.e. almost on-mass-shell) means Y long-lived é ——

w.r.t. characteristic interaction time-scale, therefore: A )
p/»u -
- valid to view collision as a ¥p interaction

- Y may fluctuate into a partonic or meson-like system



Direct & resolved photoproduction

¥ remnant > q
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* The photon may interact as a:

- point-like electromagnetic object: direct photproduction

- partonic or meson-like system: resolved photoproduction
e This distinction is only unambiguous at leading order (LO)

* pQCD photoproduction calculations require both a proton and photon PDF
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High-Et di-jets In
photoproduction

Physical Review D 76 (2007) 072011



Motivation

Data used to fit photon PDFs is relatively sparse, the most important being
the photon structure function, F;

Proton PDF fits include a wider range of data but have a common feature
that the gluon PDF is poorly constrained at (Bjorken) x > 0.1

Motivation 1) To produce a data set that could be used to test and hopefully
constrain parameterisations of both the photon and proton PDFs

Di-jets in photoproduction have been measured before by ZEUS but never:

- with such a high integrated luminosity
see next
- Including jets with such a large pseudorapidity, n slide for

details
- at such high-Et

high-Et data good for PDF fitting as minimal pQCD scale uncertainty



Analysis strategy

Jets were found using the Kt-algorithm and an event was selected if it had:

at least two jets (ordered in Et) with
(integrated lumi: 81.8 pb-1)

E)" >20GeV & E}* >15GeV

in the pseudorapidity range —-1<n’ <3

with at least one jetin —1<n’ <2.5

e[ ook in direct- and resolved-photoproduction enriched regions.

ook in “optimised” regions where gluon PDF uncertainties are largest
eCompare to NLO pQCD using various photon PDFs to distinguish between fits
*Photon PDFs Considered: CJK, AFG04, SAL, GRV-HO, AFG

*CJK assume more strongly rising gluon & treats heavy flavours thoroughly

*Proton PDF used: CTEQ5M1



Photon PDF sensitivity

1 Jjets

. define: x*” = ——
" 2yE,

y is the fraction of E carried by the y

X, is the fraction of the Yy momentum

transferred to final state

« Direct-enriched: x;”” >0.75
 Resolved-enriched: x;”” <0.75

* Direct region insensitive to Y-PDF. All
give a similar & OK description > 0.8

» Larger discrepancies in resolved region
* CJK gives much larger prediction

» Others describe data reasonably well

ETjet eXp[_njet] ~x,
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Photon PDF sensitivity

 Resolved-enriched: x;”” <0.75
1 jets . '
» define: xl‘jbs = ﬁz EX exp[n’“] ~X,
P

« All predict too steep a distribution (CJK less so0)

 CJK is reasonable for xl‘;’” > (.3 and predicts a

markedly shallower curve (inline with data)

» But CJK significantly overestimates the cross

section (~40%) between 0.1 < x?* <0.3
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Proton PDF sensitivity

- The x” cross section
in 4 optimised regions
defined with different
jet £, and 7 criteria

* Here, the gluon PDF
uncertainty dominates
(not shown on figure)

« All are direct-enriched
(insensitive to V-PDF)

* It is hoped these data
will help constrain the
gluon PDF for x / >0.1
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Nuclear Physics B 792 (2008) 1-47



Multi-jet processes in photoproduction

Multi-jet final states (three or more jets) can be (k) k)
produced by: ’*“--C:-""'
C?
- Beyond LO photoproduction processes ' q
- LO process with a hard MPI (see next slide) ) _
& ’
Ignoring MPls, an n-jet: Fossoossies &
':‘;:
_ _ . Seessosseseior
- direct process is O(aas ) A
— - \fd:::‘h":-_p_z
- resolved processes IS O(a”) Proton Proton remnant
N

4-jet direct process



Multi-parton interactions
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* Roughly speaking, MPls occur when the ¥ & p-remnants interact

* Only present in resolved photoproduction - i.e. (xy < 1)

* The resulting energy flow will tend to have low-Pt: soft MPI

« Feasibly, an MPI may be “hard” enough to produce extra jets: hard MPI

 MPIs are not in pQCD calculations and only ad-hoc in MCs



Motivation

* Motivation 1) produce data set to test high-order pQCD
- four-jet process shown here is the highest studied at HERA

- PHP complicated - direct & resolved, proton and photon PDFs

» Multi-jet final states can be simulated in MC by using parton shower
approximation - hard (high-Et) branching leads to additional hadronic jet

* Motivation 2) test this use of parton showers (only strictly valid collinearly)

e Plus, since MC predicts some influence from MPls
* Motivation 3) test magnitude of predicted MPI influence on cross sections

e Motivation 4) look for evidence of hard MPI scattering (i.e. MPI jets)



Analysis strategy

* Photoproduction events were selected that had: (lumi: 121.2 pb-1)

<24

- 3+ or 4+ (Kt) jets in with E/* > 6 GeV and ‘leet
* And were subdivided into low- and high-mass samples with:

- 25=<M,<50GeV and M,  =50GeV (invariant n-jet mass)
e Cross sections were measured and compared to:

- (HERWIG & PYTHIA) MC predictions with and without MPIs

- A LO pQCD calculation (3-jet data only)
 MPIs were simulated in:

- HERWIG using JIMMY (tuned to the data shown)

- PYTHIA using the “simple model” in the default setting



Comparison with Monte Carlo

* The cross sections binned differentially in the invariant 3- & 4-jet mass

« Compared to various MC cross sections (scaled as indicated in the legends)
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» Generally a good description by all models at high-Mnj

* Low-M,; only described once MPIs are introduced



Comparison with Monte Carlo

+ The low- M, cross sections binned differentially in X,
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. High-xyObs (direct enriched) region described by all models

. Low-xyobs (resolved enriched) region requires significant MPI influence
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Just to summarise...



High-Et di-jets summary

* High-E . di-jet cross sections have been measured in photoproduction
» The cross sections are sensitive to the paramterisation of the photon PDFs
» The data have been compare to NLO with 5 different photon PDFs

* The behaviour of the NLO was similar with 4 of the PDFs but the set from

CJK, which incorporates a more strongly rising gluon, was markedly different

obs

« CJK gave a poorer description of the X, distribution but a better description

of the features of the xf,bsdistribution. None worked throughout.

» Cross sections were measured in regions where the dominant uncertainty

was in the gluon PDF. Itis hoped such data will further constrain the gluon.



Three- & four-jet summary

Inclusive three- and four-jet cross sections have been measured in PHP

They have been compared to MC with parton showers and LO pQCD

Both require augmentation at low- M3]. and low- x;bs

MC was use to show MPIs are a possible mechanism to explain observation

At high-Mnj, both LO pQCD and (scaled) MC describe the cross sections
indicating minimal NLO corrections and the validity of using PS to simulate

high jet multiplicities (in this region)

» The data will provide an interesting test of higher order pQCD



Back-up slides



Photon PDF sensitivity
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Higher order sensitivity

Define: [A¢”|=|p/" —¢/*| - (atLO: |Agp?|=m solif A¢?|<x NLO is LO)

‘ijj‘ data is very sensitive to higher orders away from peak at ‘Aquj‘ -7

e

can compare to “NLO”

or MC in which higher
orders are simulated
using parton showers

e
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More so in resolved-
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describing shape
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