

LEADING BARYON PRODUCTION at HERA

Lorenzo Rinaldi On behalf of H1 and ZEUS Collaborations

Small-x 28/03/2007

L.Rinaldi - Leading Baryons @ HERA

Motivations

- Large fraction of events with a Leading Baryon (LB) in final state carrying high fraction of the proton beam momentum
 LB produced at small angle in forward direction: difficult detection
- Production mechanism still not clear
- Interest in LB study for next experiments @ LHC
 - → absorptive corrections related to gap survival probability (diffractive Higgs, pile-up background...)

Results discussed in this talk:

- Leading Proton (LP) spectra in DIS
- Leading Neutron (LN) spectra in DIS and photoproduction
- Dijet production with a Leading Neutron
- Latest developments in theory
- Comparison with models

Leading baryon production in ep collisions

LB production affected by absorption and rescattering effects: evidences of vertex factorization violation

Leading baryon detectors

ZEUS Leading Proton Spectrometer (LPS)

- 6 stations each made by 6 Silicon-detector planes
- Stations inserted at $10\sigma_{\text{beam}}$ from the proton beam during data taking
- $\sigma_{x_1} < 1\% \ \sigma_{p_T^2} \sim \text{few MeV}^2$ (better than p-beam spread ~ 50 100 MeV)

ZEUS Forward Neutron Calorimeter (FNC)

- 10λ lead-scintillator sandwich
- σ/E =0.65/√E, ∆Eabs=2%
- Acceptance $\theta_n < 0.8$ mrad, azimuthal coverage 30%

ZEUS Forward Neutron Tracker (FNT)

• Scint. hodoscope @ 1 λ int, $\sigma_{x,y}$ =0.23cm, σ_{θ} =22 μ rad

H1 Forward Neutron Calorimeter (FNC)

Lead-scintillator calorimeter @ 107m from I.P. + veto hodoscopes

• $\sigma(E)/E \approx 20\%$, neutron detection eff. 93±5%

Leading Proton: cross section vs x_L

 Flat below diff. peak →(1-x_L)^α, α~0
 Good description by reggeonexchange model Montecarlo samples (standard fragmentation):

- Herwig (cluster model)
- MEPS (parton shower,SCI)
- Ariadne (CDM)
 Bad description of x_L spectrum

LP: cross section vs p_T^2

Data distribution ~ exponential

Fit to exponential in each x_L bin:

$$\frac{d^2\sigma}{dx_L dp_T^2} \propto e^{-b(x_L) \cdot p_T^2}$$

LP: b-slopes vs x_L

- No strong dependence observed on x_L
 observed fluctuations due to fit range
 Good agreement with prediction from Reggeon-exchange model
- Different slopes in LEPTO
- Better HERWIG
- b-slope not well simulated by fragmentation models

Leading Neutron: One-Pion-Exchange model

O.P.E. partially explains the LN production

$$\frac{d\sigma_{ep \to eXn}(W^2, Q^2, x_L, t)}{dx_L dt} = f_{\pi/p}(x_L, t) \cdot \sigma_{\gamma^* \pi}((1 - x_L)W^2, Q^2)$$

 $f_{\pi/p}(x_L,t) \propto \frac{-t}{(t-m_{\pi}^2)^2} (1-x_L)^{\alpha(t)} F^2(x_L,t)$ $\alpha(t)$ and $F^2(x_L,t)$ model dependent

Longitudinal momentum spectrum and p_T^2 slopes discriminate between different parametrizations of fluxes

Small-x 28/03/2007

L.Rinaldi - Leading Baryons @ HERA

Rescattering model and absorption

D'Alesio and Pirner (EPJ A7(2000) 109) Neutron rescatters on γ hadronic component. Absorption enhanced when • π -n system size larger \rightarrow low x_L • γ size larger \rightarrow photoproduction

Nikolaev,Speth and Zakharov (hep-ph/9708290) Re-scattering processes via additional pomeron exchanges (Optical Theorem)

(Kaidalov,) Khoze, Martin, Ryskin (KKMR)

(hep-ph/0602215, hep-ph/0606213) Enhanced absorptive corrections (\rightarrow exclusive Higgs @ LHC), calculation of migrations, include also ρ and a_2 exchange (different $x_L \& p_T$ dependences)

LN: longitudinal momentum spectrum

• LN yield increases with x_L due to increase in phase space: $p_T^2 < 0.476 x_L^2$

 LN yield decreases for x_L→1 due to kinematic limit

LN: ratio yp/DIS

- Data compared to OPE with absorption.
- Qualitatively similar to D'Alesio and Pirner (loss through absorption) Nikolaev,Speth and Zakharov model also shown: similar trend but weaker x₁ dependence W dependence: σ~W^α, α($σ_{yp}$) ≠ α($σ_{y*p}$) $W_{\pi}^{2}=(1-x_{L})W_{D}^{2} \rightarrow (1-x_{L})^{-0.13}$ absorption rate rescaled Models in agreement with data
- LN yield in PHP < yield in DIS
 → factorization violation

LN: KKMR absorption model

Kaidalov, Khoze, Martin, Ryskin: including migrations and other isovector exchanges

- Pure π exchange (not shown) too high
- Absorption and migrations effects reduces the LN yield and fit the data better
- Additional ρ and a_2 exchanges enhance the LN yield

LN: DIS cross section vs p_T^2 in x_L bins

 p_T² distributions well described by an exponential

$$\frac{1}{\sigma_{inc}} \frac{d^2 \sigma_{LN}}{dx_L dp_T^2} = a(x_L) \cdot e^{-b(x_L)p_T^2}$$

• Intercept $a(x_L)$ and slopes $b(x_L)$ fully characterize the x_L - p_T^2 spectra

LN: intercepts and slopes in DIS

$$\frac{1}{\sigma_{inc}} \frac{d^2 \sigma_{LN}}{dx_L dp_T^2} = a(x_L) \cdot e^{-b(x_L)p_T^2}$$

LN b-slopes: DIS & photoproduction comparison

slopes different in photoproduction and DIS in general agreement with expectation from absorption model

- \rightarrow more absorption @ small n- π size
 - \rightarrow depletion @ large p_T
 - \rightarrow steeper slope in photoproduction

LN b-slopes: comparison to models

OPE models:

Dominant at 0.6<x₁<0.9</p>

(non-) Reggeized flux, different form factors with different parameters
none of the models seem to decribe the data well

KKMR model:

good description of the data considering absorption effects and ρ , a_2 exchange contributions

LN spectrum: Q² dependence 3 Q² bins + γp

LN yield increases monotonically with Q²
consistent with absorption (larger Q² → smaller γ)

LN: comparison to leading proton

- For pure isovector exchange isospin Glebsch-Gordan →r^{LP}=1/2 r^{LN}
- r^{LP}>r^{LN} : other exchanges needed

- LN slope increases up to $x_L \sim 0.8$
- LP slope almost flat
- Similar values in the range $0.7 < x_L < 0.85$ when π exchange dominates

LN production compared to MC predictions

- Compare LN DIS distribution to MC models:
 - RAPGAP standard fragmentation
 - RAPGAP OPE
 - LEPTO standard fragmentation
 - LEPTO soft color interaction
- Both standard fragmentation fail
 - Too few n, too few x_L
 - b-slopes too low
- RAPGAP-OPE: close to data in shape but not in magnitude
- LEPTO-SCI: reasonable description of x_L spectrum and intercepts, bad slopes

Other models also fail (ARIADNE, CASCADE, PYTHIA, PHOJET)

Dijet production with a LN

$DIS \leftrightarrow direct photoproduction$

resolved photoproduction

Re-scattering processes expected for resolved γp : photon acts hadron-like \rightarrow additional interactions between remnants and scattered partons

Relevant variable:

$$b_{s} = \frac{\sum_{j \in I, 2} E_{T} e^{-\eta}}{(E - p_{z})_{had}}$$

momentum fraction of the photon entering the hard sub-process.

Dijet production with a LN: $\sigma_{jj+n}/\sigma_{jj}$

ZEUS: RAPGAP/HERWIG-MI (········) (Nucl.Phys.B596,3(2001))

No possibility to decide on factorization breaking due to re-scattering processes in resolved photoproduction (x_{γ} <1) with hadron-like photon. Small-x 28/03/2007 L.Rinaldi - Leading Baryons @ HERA

Summary

- High precision measurements of leading baryon production available from HERA
- LP spectra measured in DIS and well described by Reggeonexchange model
- LN production measured in DIS and photoproduction
- LN characterized by rescattering and absorption effects: the data are quite well reproduced by some models
- MC generators in general fail to reproduce the measured quantities → need to tune the generators

Leading baryon study remains an important topic in HEP with a direct impact on next experiments @ LHC

LP absorption effects

Rescattering model and absorption 1

Model 1: One pion exchange in the framework of triple-Regge formalism

Nikolaev,Speth & Zakharov

Re-scattering processes via additional pomeron exchanges (Optical Theorem)

(hep-ph/9708290)

(Kaidalov,) Khoze, Martin, Ryskin (KKMR)

Enhanced absorptive corrections (\rightarrow exclusive Higgs @ LHC), calculation of migrations, include also ρ and a_2 exchange (different $x_L \& p_T$ dependences) (hep-ph/0602215, hep-ph/0606213) p = -

Rescattering model and absorption 2

Model 2: calculations from D'Alesio and Pirner in the framework of target fragmentation (EPJ A7(2000) 109)

more absorption when photon size larger (small Q²) → less neutrons detected in photoproduction
 more absorption when mean π-n system size (<r_{nπ}>) smaller at low x_L
 → less neutrons detected at low x_L
 more absorption → fewer neutrons detected with higher p_T² → larger b-slope expected in photoproduction

