### QCD analysis of diffractive processes

Laurent Schoeffel CEA Saclay



#### Panorama of « diffraction » in high energy phyisics : From the basics (no previous knowledge needed) till the latest developments

We will talk of 3D picture of the nucleon, GPDs, Higgs searches etc.

# Definition of hadronic diffraction

#### Diffraction in particle physics @ large Energy (s >> t)



- -The proton is left intact or quasi-intact
- Large Rapidity Gap (LRG)
- Vacuum Quantum Number exchange
   [no colour flow]
   == Pomeron (IP)



### Why « diffraction » ?



L. Schoeffel (CEA Saclay)

PIC 2007, Annecy

# Diffraction @ HERA

#### HARD diffraction @ HERA (i.e. in the presence of a hard sacle)



<u>Ideal channel to analyse :</u> Diffractive exchange @ HERA with the hard scale provided by  $Q^2$  (the virtuality of the photon) Observed since 1994 @ HERA

Then, the challenge is to understand these processes in terms of pQCD



Partonic structure for diffractive processes // standard DIS ?

 Colorless exchange can be realised by an exchange of 2 gluons exchange

=> Generic mechanism of diffraction ?

### Why studying diffraction ? (headlines)

-hadron-hadron cross section @ large energy

- longstanding pb of the IP structure (specific PDFs)

-Modeling DIFF => saturation effects in the nucleon

-Structure of the proton in 3D

-Higgs @ LHC

#### DIS vs DIFF events @ HERA





"Diffractive" Deep-Inelastic The Pomeron as a composite object



# QCD factorisation for diffractive events



#### QCD factorisation DIS vs DIFF



$$f_a^D(z,\mu^2,x_{I\!\!P},t) = \sum_X \int dy_- \,\mathrm{e}^{-i\,zP^+y^-} \langle P \,|\overline{\psi_a}(y_-)\gamma^+ \underbrace{|P'X\rangle\langle P'X|}_{}\psi_a(0)|P\rangle$$

dPDFs ( $\beta$ ,Q<sup>2</sup>) follow the DGLAP QCD evolution eq. // standard PDFs

PIC 2007, Annecy

### Kinematics & diffractive S.F.



Standard DIS kinematic variables : Q<sup>2</sup>, x, W

 $x_{IP} = 1 - p'^{+}/p^{+}$ : fraction of the longitudinal momentum lost by the proton (below a few%)

 $\beta = x/x_{IP}$ : fraction of the IP momentum carried by the struck quark in the diffractive exch.

Important formula :  $\beta \approx Q^2 / (Q^2 + M_X^2)$ 

$$\frac{d^{3}\sigma}{d\beta dQ^{2}dx_{IP}} = \frac{4\pi\alpha^{2}}{\beta Q^{4}}(1-y+\frac{y^{2}}{2})\sigma_{r}^{D(3)}(\beta,Q^{2},x_{IP})$$
$$\sigma_{r}^{D(3)} = F_{2}^{D(3)} - \frac{y^{2}}{2(1-y+y^{2}/2)}F_{L}^{D(3)}$$

We measure the diffractive cross section, then we get  $F_2^{D}$ 

#### Diffractive S.F.



#### Diffractive PDFs





Large gluon content (in the IP) carrying the main part of the momentum

Large uncertainty @ large  $\beta$ 

#### The factorisation theorem (+resolved IP model+dPDFs) gives a good description of the F2D data

## The limit of factorisation @ Tevatron

#### Universality of dPDFs extracted from HERA data?



Mismatch of a factor~10 => factorisation does not hold ! As expected for p-p collisions : underlying interaction that spoils the gap in rapidity (« survival » gap probability of a few %)

#### « Restoring » factorisation @ Tevatron



The diffractive S.F. measured on the proton side in events with a leading anti-proton is not suppressed :

The price for producing a gap (survival probability) is paid only once! This confirms that the survival Gap probability may be just an underlying interaction between spectator partons in the protons...

#### Conclusion on diffractive PDFs



Diffractive PDFs : only « twist-2 » functions (by definition) => Essential measurement of FLD needed to conclude if this hypothesis is correct or not [& dPDF(gluon) usable beside F2D]!

### Why studying diffraction ? (headlines)

-hadron-hadron cross section @ large energy

- longstanding pb of the IP structure (specific PDFs)

-Modeling DIFF => saturation effects in the nucleon

-Structure of the proton in 3D

-Higgs @ LHC

#### Weakness of dPDFs



$$f_a^D(z,\mu^2, x_{I\!\!P}, t) = \sum_X \int dy_- \, \mathrm{e}^{-i\,zP^+y^-} \langle P \, | \overline{\psi_a}(y_-)\gamma^+ \underbrace{|P'X\rangle\langle P'X|}_{} \psi_a(0) | P \rangle$$

Not a universal description of DIS and DIFF : We need 2 completly different sets of PDFs!

Can we find a model for DIFF following directly DIS?

#### Beyond the dPDFs : modeling the diffractive exchange



#### Modeling the diffractive exchange





 $\sigma_{diff}/\sigma_{DIS} \sim constant [W] !$ 

=> Inclusive diffraction : softer than a pure 2-(hard) gluons exchange



<u>What next ?</u> Modeling the DIFF exchange in **exclusive diffractive processes** (cleaner events / inclusive case)

### Why studying diffraction ? (headlines)

-hadron-hadron cross section @ large energy

- longstanding pb of the IP structure (specific PDFs)
- -Modeling DIFF => saturation effects in the nucleon

-Structure of the proton in 3D

-Higgs @ LHC

#### Exclusive processes @ HERA

For exclusive processes : <u>can we apply the same concept of 2g exchange ?</u>

(**J<sup>PC</sup>=1<sup>--</sup>**): ρ, φ, **J**/ψ, Y,... VM M p р  $M_V^2$  $Q^2$ J/ψ, ρ  $\sim$ M  $|g(x, \mu^2)|^2$ p

A 2-gluons exchange is the LO realisation of a vacuum Q.N. exchange With  $\sigma_{\text{DIS}}^{\gamma^*p}$  (=  $4\pi^2 \alpha / Q^2$  . F<sub>2</sub>) ~ W<sup>2 $\lambda$ </sup> ~ W<sup>0.3/0.4</sup>

We expect :  $\sigma(J/\psi) \sim W^{0.6/0.8}$ Steep rise of the xs => the concept (2-g) works!



#### Exclusive processes & QCD





#### The comple formula includes :

- Unintegrated PDFs
- Skewing effects







Good description of the data => The 2-gluons exchange is a correct generic hard process (hard Pomeron in pQCD)

#### First comments on skewing



In general,  $\mathbf{x}_1 \neq \mathbf{x}_2$ :  $\sigma \propto [\mathbf{x} g(\mathbf{x})]^2$   $\mathbf{v}$  $\sigma \propto [\mathbf{H}(\mathbf{x}_1, \mathbf{x}_2)]^2$ 

Generalised parton distribution functions (GPD)

GPDs modifies the prediction by ~ 30% for  $J/\psi$  prod. (vs no skewing)

It can be a factor 4 on cross section for exclusive  $\gamma$  production

#### Exclusive processes & QCD

@ lower W (larger x): the qq exchange contributes with a xs > 2g exchange the pQCD calculations predict these two terms with the correct amplitude taking into account the GPDs formalism (skewing effects)



#### The *simplest* process : e p $\rightarrow$ e $\gamma$ p

#### Deeply Virtual Compton Scattering (DVCS)









#### On the importance of skewing



## QCD and diffraction (exclusive)



The 2 gluons exchange mechanism works well in the presence of a hard scale : large M, large  $Q^2$ 

+ some refinements due to skewing effects : x1-x2 ~ [Q<sup>2</sup>+M<sup>2</sup>] / W<sup>2</sup>

For VMs, predictions are still uncertain due to the unknown in the VM wave function! => Interest of DVCS (γ) : pure QCD prediction avaible @ NLO (& even NNLO recently)

#### QCD predictions on DVCS



# Nucleon tomography (3D) : a new issue



With DVCS, we measure/extract a  $GPD(x_1, x_2, t)$ 

- We have seen that the t-dependence is essential in normalisation of QCD predictions
- A more fundamental point : it gives access to a completly new issue in nucleon physics : the <u>TRANSVERSE SIZE</u>!

PDF (transverse plane) = F.T. { 
$$GPD[\Delta_{\perp}]$$
 }  
 $q(x, \mathbf{r}_{\perp}, Q^2) = \int \frac{d^2 \Delta_{\perp}}{(2\pi)^2} e^{-i\mathbf{r}_{\perp} \Delta_{\perp}} GPD_q(x, Q^2, t = -\Delta_{\perp}^2)$ 

r<sub>⊥</sub> & ∆<sub>⊥</sub> are conjugate variables : <r<sub>T</sub><sup>2</sup>> =4 d/dt[GPD(x,t)]/GPD(x,0)

H1 : measurement of do/dt[DVCS] => spatial distribution of sea and glue



## Nucleon tomography (3D): measurement



### Nucleon tomography (3D) : summary

 $b\,=\,5.45\pm0.19\pm0.34~{\rm GeV^{-2}}$ 

=> √<r<sub>T</sub>²>=0.65 fm >> valence quarks value Important measurement in the context of the fast improving lattice calculations!

#### Lattice calculation (unquenched QCD):

Negele *et al.,* NP B128 (2004) 170 Göckeler *et al.,* NP B140 (2005) 399

- fast parton close to the N center
   = small valence quark core
- slow parton far from the N center
   widely spread sea q and gluons





#### The x dependence of GPDs

Measure the DVCS cross section with lepton(+) and lepton(-) beams Determine the beam charge asymmetry :  $(\sigma + -\sigma -)/(\sigma + + \sigma -)$ BCA( $\phi$ ) ~ P.V.[ $\int$ GPD(x,\xi,t)/(x-  $\xi$ ) + c.t.]. cos( $\phi$ ) + terms in cos((n>1) $\phi$ ) We can 'access' GPDs!

First results @ HERMES/H1

Future precision measurements @ COMPASS large discrimination vs models of GPDs



## DVCS and the nucleon orbital momentum

#### <u>A longstanding difficult problem that can be addressed by DVCS/GPDs</u>

Contribution to the nucleon spin knowledge

 $\frac{1}{2} = \frac{1}{2} \Delta \Sigma + \Delta G + \langle L_z^q \rangle + \langle L_z^g \rangle$ 

 $2J_q = \int x \left( H^q \left( x, \xi, 0 \right) + E^q \left( x, \xi, 0 \right) \right) dx$ 

=> J can be accessed with GPDs

 $\Delta\Sigma + \Delta G$  determined from EMC/SLAC/COMPASS results (on going work)

=> ORBITAL MOMENTUM



### Why studying diffraction ? (headlines)

- -hadron-hadron cross section @ large energy
- longstanding pb of the IP structure (specific PDFs)
- -Modeling DIFF => saturation effects in the nucleon
- -Structure of the proton in 3D
- -Higgs @ LHC

#### Double Pomeron Exchange in pp collisions



L. Schoeffel (CEA Saclay)

PIC 2007, Annecy

#### Dijet mass fraction @ TeV : measurement & predictions



#### Exclusive Higgs production @ LHC

After the hints from the TeV, let's come back on the Higgs exclusive production @ LHC : simul for a 120 & 150 GeV mass Higgs! Measurement of the mass from :  $M_x^2 = s \xi_1 \xi_2$ 



Signal and background for different Higgs masses for 100  $fb^{-1}$ 

L. Schoeffel (CEA

#### Experimental aspects @ LHC

- FP420: Project of installing roman pot detectors at 420 m both in ATLAS, CMS; collaboration being built
- Roman pot detectors at 220 m in ATLAS:
- Natural follow-up of the ATLAS luminosity project at 240 m to measure total cross section
- Complete nicely the FP420 m project
- Collaboration between Saclay. Prague, Cracow and Stony Brook (so far) being pursued
- Collaboration with the FP420 m project concerning detectors, triggers, simulation...





#### Summary & Conclusion

-hadron-hadron cross section @ large energy

- longstanding pb of the IP structure (specific PDFs)

-Modeling DIFF => saturation effects in the nucleon

-Structure of the proton in 3D

-Higgs @ LHC

=> New windows opened on the proton structure driving the theory on the low x dynamics, lattice calculations etc.