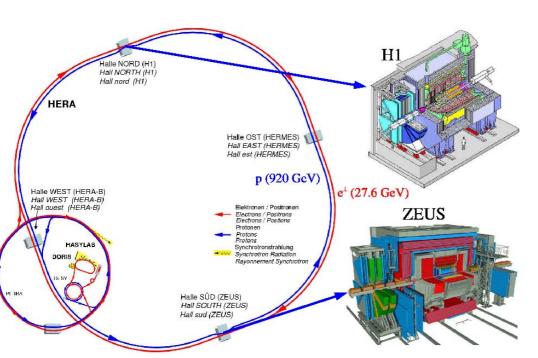
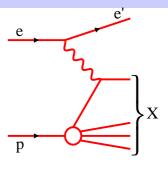


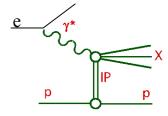
Alice Valkárová

(Charles University, Prague)


on behalf of H1 and ZEUS collaborations



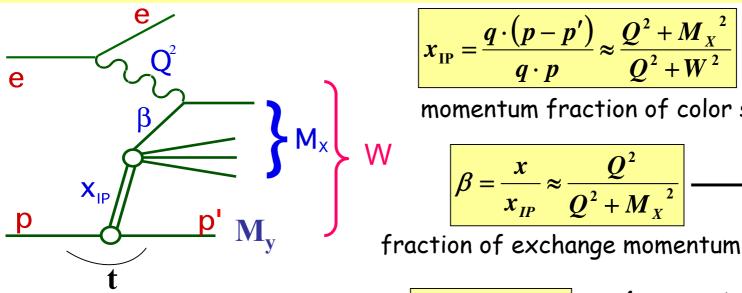
HERA collider experiments



- 27.5 GeV electrons/positrons on 920 GeV protons $\rightarrow \sqrt{s}$ =318 GeV
- two experiments: H1 and ZEUS
- HERA I: 16 pb⁻¹ e-p, 120 pb⁻¹ e+p
- HERA II: $\sim 550 \text{ pb}^{-1}$, $\sim 40\%$ polarisation of e+,e-

DIS: Probe structure of proton $\rightarrow F_2$

Diffractive DIS: Probe structure of color singlet exchange $\rightarrow F_2^D$


Diffraction and diffraction kinematics

HERA: ~10% of low-x DIS events are diffractive

Why to study diffraction?

- fundamental aim: to understand high energy limit of QCD (gluodynamics)
- · novelty: for the first time probe partonic structure of diffractive exchange
- practical motivations: to study factorisation properties of diffraction try to transport to **hh** scattering (e.g.predict diffractive Higgs production at LHC)

$$x_{\text{IP}} = \frac{q \cdot (p - p')}{q \cdot p} \approx \frac{Q^2 + M_X^2}{Q^2 + W^2}$$

momentum fraction of color single exchange

$$\beta = \frac{x}{x_{IP}} \approx \frac{Q^2}{Q^2 + M_X^2}$$

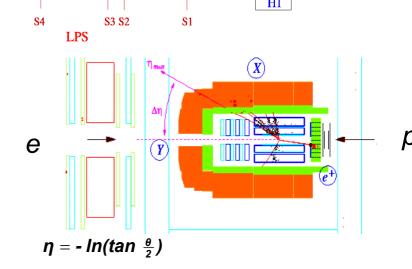
fraction of exchange momentum, coupling to γ^*

$$\frac{t = (p - p')^2}{\text{squared}} \rightarrow \frac{4 - \text{momentum transfer}}{\text{squared}}$$

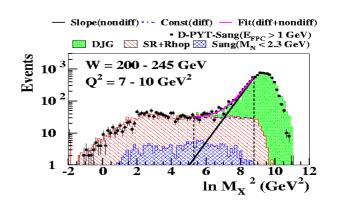
Diffractive Event Selection

FPS

1) Proton Spectrometers:

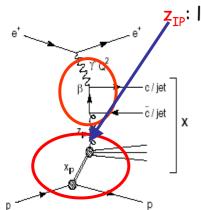

- ZEUS: LPS (1993-2000)
- H1: FPS (1995-), VFPS (2004-)
- t measurement
- access to high x_{IP} range
- free of p-dissociation background at low x_{IP}
- small acceptance → low statistics \(\overline{\over

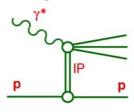
2) Large Rapidity Gap, H1, ZEUS:

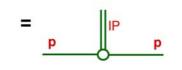

- Require no activity beyond η_{max}
- t not measured, some p-diss background

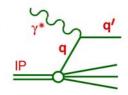
3) M_{\star} method, ZEUS:

- Diffractive vs non-diffractive: exponential fall off vs constant distribution in $ln M_x^2$
- Some p-diss contribution $\frac{dN}{d\ln M^2}$ $\frac{diff.}{d\ln M^2}$ non-diff $\frac{dN}{d\ln M^2}$


ZEUS




Factorisation properties in diffraction



longitudinal momentum fraction of gluon rel to colorless exchchange

QCD factorisation

rigorously proven for DDIS by Collins at al

$$\sigma^{D}(\gamma^{*}p \to Xp) \propto \sum_{parton_{i}} f_{i}^{D}(x,Q^{2},x_{IP},t) \cdot \sigma^{\gamma^{*}i}(x,Q^{2})$$

 σ^{γ^*i} universal hard scattering cross section (same as in inclusive DIS)

 f_i^D diffractive parton distribution functions \rightarrow obey DGLAP, universal for diffractive ep DIS (inclusive, di-jets, charm)

Regge factorisation

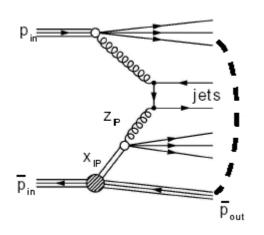
conjecture, e.g. Resolved Pomeron Model by Ingelman, Schlein

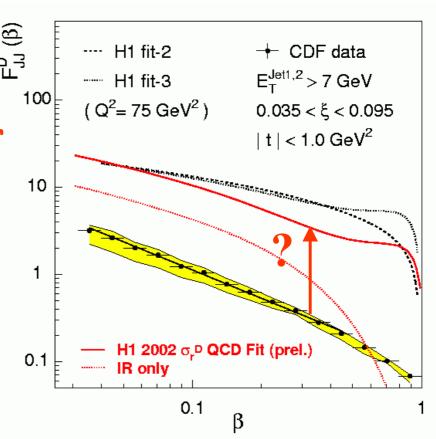
Regge motivated pomeron flux

$$f_{IP/p}(x_{IP},t) = \frac{e^{Bt}}{x_{IP}^{2\alpha(t)-1}}$$

$$f_i^D(x,Q^2,x_{IP},t) = f_{IP/p}(x_{IP},t) \cdot f_i^{IP}(\beta = x/x_{IP},Q^2)$$

Exctracted from inclusive diffraction!




Exporting PDFs from HERA to the Tevatron.....

CDF Tevatron data:

At Tevatron HERA PDF's do not work....????

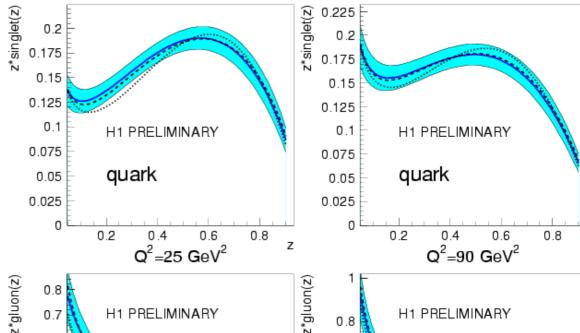
Dijet cross section factor 5-10 lower than the QCD calculation using HERA PDFs

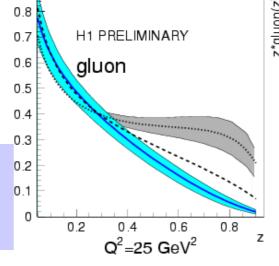
QCD factorisation in diff. DIS

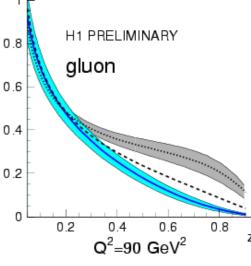
Factorisation in DIS difraction dijets proven by both H1 and ZEUS

Low sensitivity of fits to inclusive cross section to gluon PDF especially at large $z_{IP} \rightarrow \underline{\text{use jets to combined fits!}}$

H1 dijet DIS measurement:

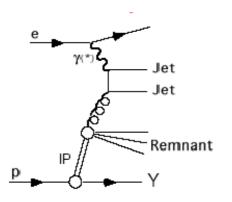

· new NLO QCD fit




----- H1 2006 DPDF Fit

----- H1 2006 DPDF Fit B

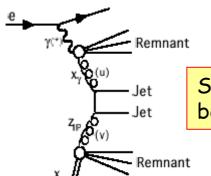
Factorisation in diffractive DIS D*production proven by both H1 and ZEUS



Direct and resolved photoproduction at HERA

 x_{γ} - fraction of photon's momentum in hard subprocess

$$x_{\gamma} = x_{\gamma}^{OBS} = \frac{\sum (E - p_z)_{jets}}{(E - p_z)_{hadrons}}$$


DIS (Q²>5GeV²) and direct photoproduction (Q² \simeq 0):

photon directly involved in hard scattering

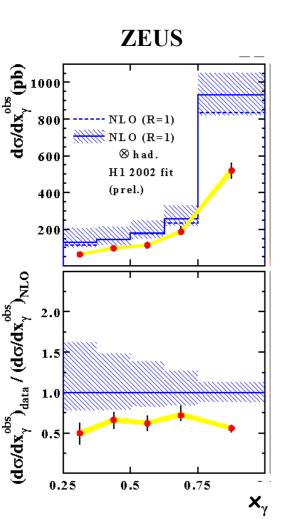
$$\cdot x_{\gamma} = 1$$

Resolved photoproduction ($Q^2 \simeq 0$):

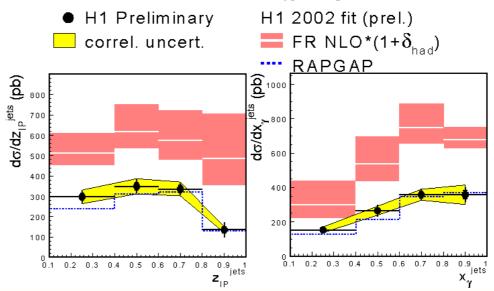
• photon fluctuates into hadronic system, which Secondary interactions ronic scattering

between spectators??

suppressed!



Jets in photoproduction thought to be ideal testing ground for rescattering

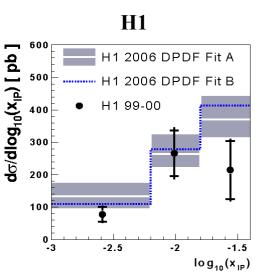


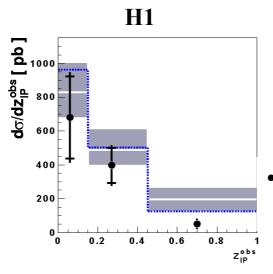
Diffraction in Photoproduction-dijets

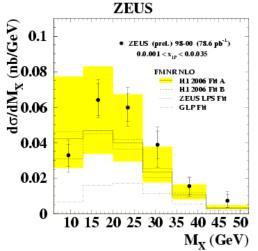
H1 Diffractive γp Dijets

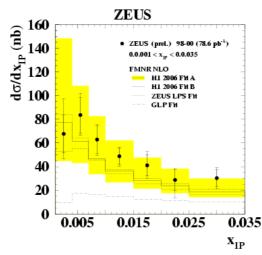
H1 and ZEUS:

- NLO overestimates data by factor ~1.6
- Scaling only resolved part doesn't describe data either
- PDF uncertainty? Unlikely, as DIS is described...


Within errors suppression observed for both dir and res!


17.1.2007


Factorisation in photoproduction-D*



- data consistent with NLO QCD prediction within scale uncertainties
- no evidence for suppression of charm direct photoproduction

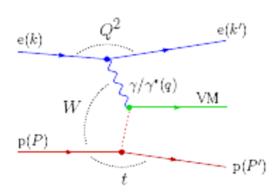
however - large
 NLO uncertainties

Within errors no suppression observed!

	dijets	D*	
DIS	0 0		
photoproduction	0 0	•	low statistics, large NLO uncertainty
breakdown observed for both			

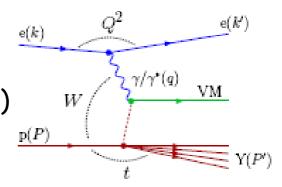
direct and resolved processes!

Vector meson production



Vector mesons have $J^{PC} = 1^{-1}$ as photon

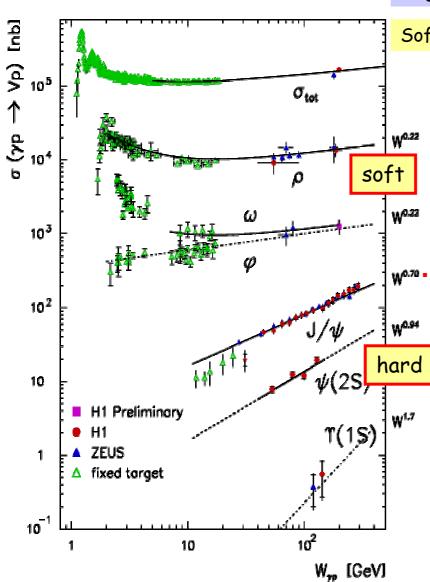
no quantum number exchange necessary

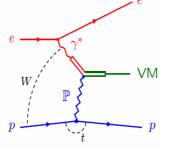

Large diffractive cross sections in wide kinematic range

→ HERA is an excellent place for VM studies

Elastic - exclusive, dominates at low |t|

e + p
$$\rightarrow$$
e + VM + p (or Y)
VM = $\rho,\omega,\Phi,J/\psi,\psi',Y....$

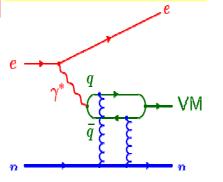

Proton dissociative mainly at high |t|


Two regimes of VM production

Soft pomeron exchange

 $\frac{d\sigma}{dt} = e^{bt} \left(\frac{W}{W_0}\right)^{4(\alpha_0 - 1)}$

 $a_P(t)=a_0+a't$ $a_0=1.08$, a'=0.25 GeV²


Slow rise: $\sigma \propto W^{0.22....0.32}$

Shrinkage: b=b(W)

Light VMs at $Q^2 \approx 0$, $t \approx 0$

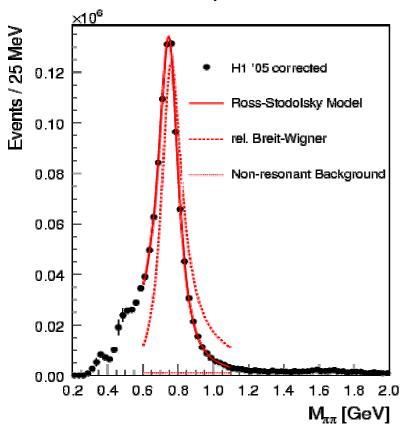
Calculable in pQCD

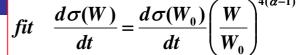
Exchange of 2 gluons or ladder

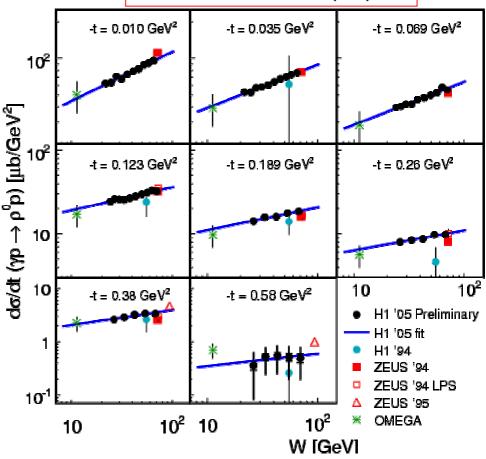
 $\sigma \propto (xg(x,Q^2))^2$

Steep rise of σ Shrinkage Presence of hard scale: Q^2 , t, M_{VM}

ρ^0 in photoproduction

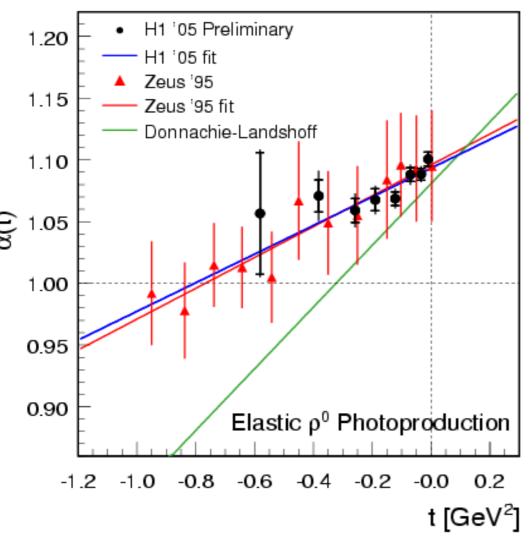



H1: new measurement


HERA II data (2005)

Q2 < 4 GeV2;20 < W< 90 GeV

~ 240000 ρ^0 candidates


Fits from data from a single experiment Very good agreement with previous results from H1, ZEUS and OMEGA

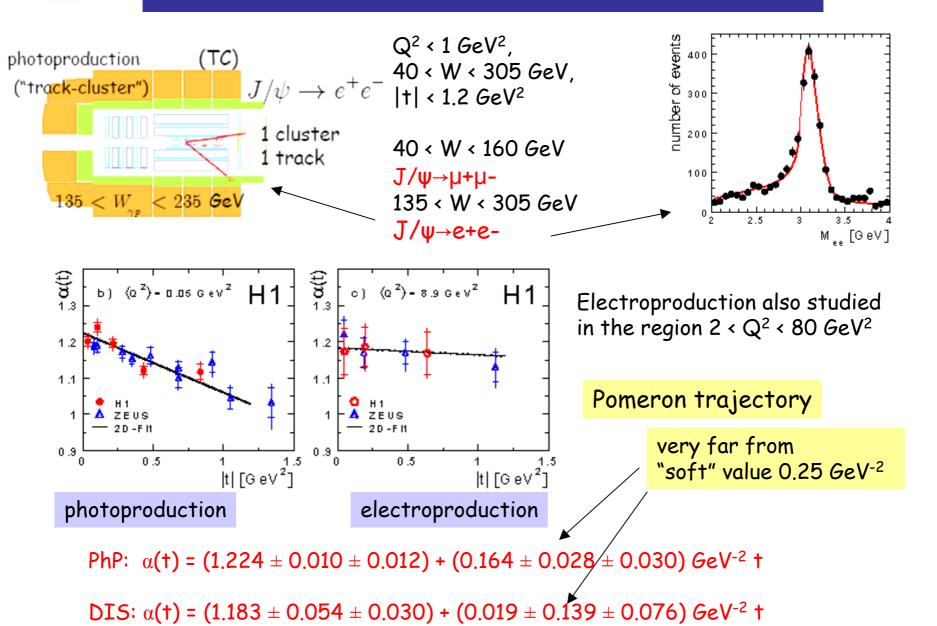
ρ⁰ Pomeron Trajectory

H1 PRELIMINARY

Fit to the H1 data assuming a linear Pomeron trajectory

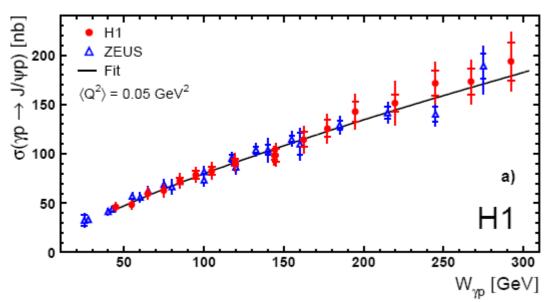
$$\alpha(t) = \alpha_0 + \alpha' \cdot t$$

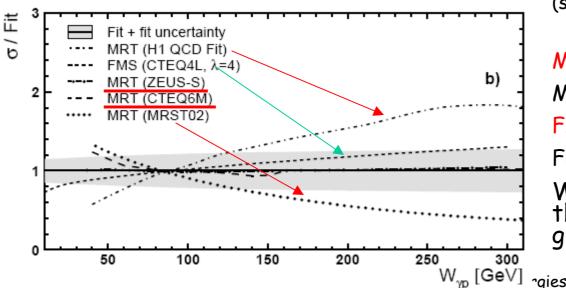
$$\alpha_{\rm IP}(t) = (1.093 \pm 0.003^{+0.008}_{-0.007})$$


+ $(0.116 \pm 0.027^{+0.036}_{-0.046})$ GeV⁻²·t

Supports previous measurement of ZEUS

 $^{\prime}\alpha^{\prime}$ significantly smaller than 0.25 GeV-2

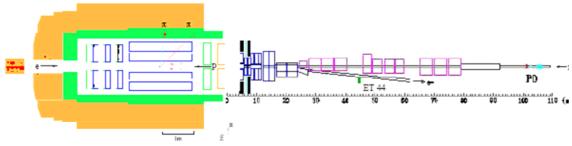

Elastic J/w production



Elastic J/w photoproduction

 $J/\Psi \rightarrow \mu^{+}\mu^{-}$; $J/\Psi \rightarrow e^{+}e^{-}$ $Q^{2} < 1 \text{ GeV}^{2}$, $|+| < 1 \text{ GeV}^{2}$ $40 < W < 305 \text{ GeV}^{2}$ Good agreement with measurement by ZEUS Fit W $^{\delta}$ δ =0.75 ± 0.03 ± 0.03 (soft pomeron $\delta \sim 0.22$ -0.32)

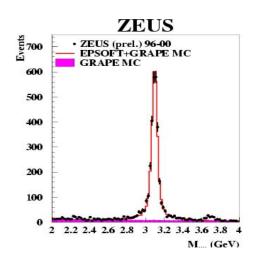
MRT - pQCD model by
Martin, Ryskin and Teubner
FMS - dipole model by
Frankfurt, McDermott, Strikman
W dependence is sensitive to
the shape of the generalised
gluon distribution!



Vector mesons at large |t|

- vector meson photoproduction at large |t| proposed as test of BFKL
- · challenge is to describe both the t dependence and the helicity structure

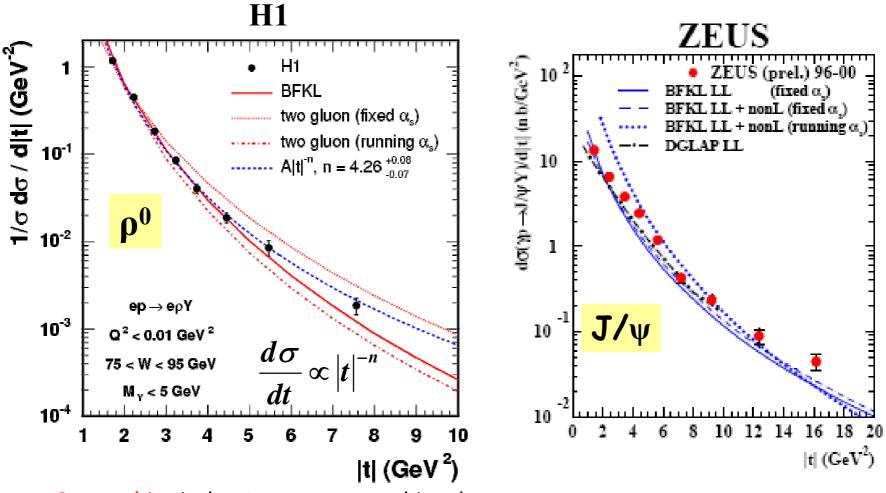
H1 - ρ^0 photoproduction



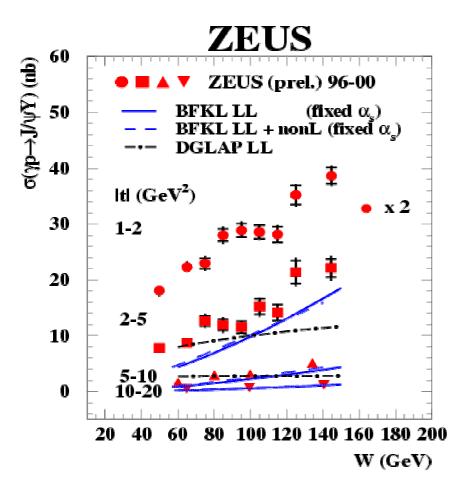
Data 2000 Q² < 0.01 GeV² 75 < W < 95 GeV 1.5 < |t| < 10 GeV² M_y < 5 GeV

 $\rho^0 \rightarrow \pi + \pi -$

ZEUS - J/ψ photoproduction


Data 1996-2000 Q² < 1 GeV², 50 < W < 150 GeV, 1 < |t| < 20 GeV² M_y < 30 GeV

Vector mesons at large |t|



- Power-like behaviour supported by data
- BFKL model gives reasonable description, "two gluon" model doesn't describe data

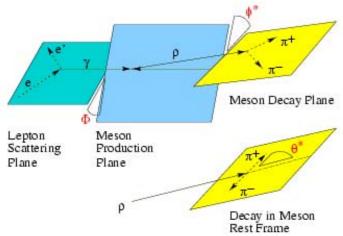
VM at large |t| -W dependence

J/ψ

Fit $\sigma \propto W^{\delta}$, δ rises with |t|

Effective pomeron trajectory: $\alpha(0)=1.153\pm0.048\pm0.039$ $\alpha'=-0.020\pm0.014\pm0.010~GeV^{-2}$

(in agreement with older H1 result)


- BFKL reproduces general behaviour of data
- DGLAP is not able to describe rise of cross section with W

Testing the Meson Wavefunction

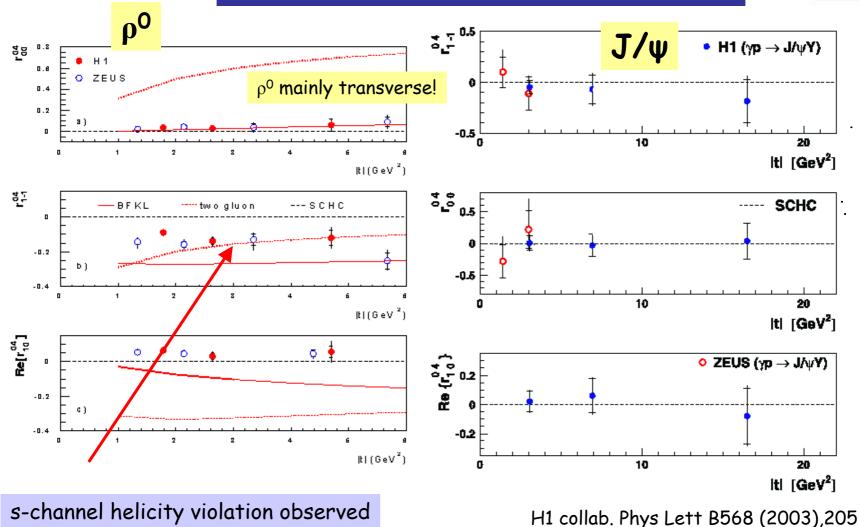
Helicity = component of spin along direction of the particle's motion

SDMEs are bilinear combinations on the helicity amplitudes

$$r_{kl}^{ij} \propto M_{\lambda_{VM}\lambda_{\gamma}} M_{\lambda'_{VM}\lambda'_{\gamma}}$$

- in photoproduction can only measure θ^* & Φ^*
 - ⇒ allows measurement of 3 of the 15 spin density matrix elements (SDME)
- s-channel helicity conservation (SCHC)
 - ⇒ vector meson retains helicity of photon
 - ⇒ all 3 SDMEs are predicted to be zero

pQCD:


- •During the interaction, the orbital momentum of $\overline{q}q$ can be modified through the transverse momentum carried by gluons
- The helicity of the outgoing vector meson can be different from that of the incoming photon, helicity flip between photon and meson is possible

$$\frac{1}{\sigma} \frac{d^2 \sigma}{d \cos \theta * d \phi *} = \frac{3}{4\pi} \left(\frac{1}{2} \left(1 + r_{00}^{04} \right) - \frac{1}{2} \left(3 r_{00}^{04} - 1 \right) \cos^2 \theta * + \frac{1}{2} \left(\sqrt{2} \operatorname{Re} \left\{ r_{10}^{04} \right\} \sin 2\theta * \cos \phi * + r_{1-1}^{04} \sin^2 \theta * \cos 2\phi * \right) \right)$$

Helicity conservation?

Two-gluon and BFKL models clearly inconsistent with data!

Summary

Factorisation tested with diffractive DIS and photoproduction dijets and charm:

 indication of QCD factorisation breaking in diffractive dijet photoproduction (but still large errors)

Elastic ρ^0 and J/ψ in photoproduction:

- pomeron trajectory determined using data within one experiment
- α' significantly less than 0.25 GeV⁻²
- transition from soft to hard diffraction regime observed, (large |t|, M_{VM})
- heavy Vector Meson measurements sensitive to gluon densities

ρ^0 and J/ψ photoproduction at large |t|:

- · W and t dependencies described by pQCD BFKL model
- · BFKL model fails to describe the helicity structure