The Photon in Diffraction at HERA

Sebastian Schätzel, DESY for H1 and ZEUS

PHOTON Conference Paris, 9 July 2007

Universality of diffractive proton structure e structure functions, dijets, D* production

Role of the photon DIS vs. Photoproduction, direct vs. resolved photon

Diffractive HERA Events

$\approx 10\%$ of all HERA events are diffractive

- proton remains intact
- forward detectors empty
- selection methods:
 - proton tagging
 - Roman pots, low acceptance/statistics
 - measure t dependence: B=5..8 GeV⁻²
 - rapidity gap (and derived)
 - |t|<1 GeV², ≈25% proton dissociation with mass≤2 GeV

Kinematics

Q² photon virtuality, -(4-momentum)²

β quark momentum fraction

Diffractive variable:

x_{IP} fractional proton momentum loss small in diffraction (1%)

rapidity gap
$$\, \Delta \eta \sim - \ln(x_{I\!\!P}) \,$$

typically >3.5

cross section =
$$\frac{4\pi\alpha^2}{xQ^4} Y_+ \sigma_r^D(x, Q^2, x_{I\!P}, t)$$
$$\sigma_r^D = F_2^D - \frac{y^2}{Y_+} F_L^D$$
$$\uparrow$$
$$\mathbf{x} = x_{I\!P} \beta$$
$$Q^2 = s x y$$
$$F_{\perp} \text{ only important at high y}$$

9

Tagged proton vs. Gap

Factorisation and PDFs

• factⁿ theorem for diffraction in DIS: (Collins et al.)

- test DPDF universality:
 - extract DPDF from measurement of simplest process: ep→eXp in DIS
 - apply DPDF in calculations for jet and D* production in DIS and photoproduction

Inclusive cross section and fit

- measure quarks directly $F_2^D \sim \beta \sum_i e_i^2 \ q_i^{LO}$
- gluon from scaling violations $\partial F_2^D/\partial \ln Q^2 \sim \alpha_s \, g^{LO}$

positive scaling violations up to $\beta \approx 0.6$

ordinary F_2 rises up to $x_{Ri} \approx 0.1$

large gluon component

Extraction of parton content

Recipe: (standard procedure, like for F₂)

- measure cross section as a function of Q^2
- parameterise momentum densities q(z), g(z) at starting scale $Q_0^2 \approx 2 \text{ GeV}^2$
- evolve q,g to measured Q² using DGLAP equations
- find parameterisation which fits best throughout Q² range

Details:

• not enough data to fit at fixed x_{IP} phenomenological Ansatz for densities: $f_i^D(\beta, Q^2, x_{I\!P}, t) = f_{I\!P}(x_{I\!P}, t) f_{i/I\!P}(\beta, Q^2)$ $f_{I\!P} \propto \frac{e^{Bt}}{x_{I\!P}^{2\alpha_{I\!P}(t)-1}} \text{ describes data well}$

Diffractive parton densities

- quark singlet $\sum = u + d + s + \bar{u} + \bar{d} + \bar{s}$
- gluon carries ~70% of momentum
- little sensitivity to gluon at z≥0.5

2 different gluons (Fit A and B) describe inclusive diffraction equally well

Dijets in DIS

Charm in DIS

Eur.Phys. J. C50 (2007) 1

p_T(D*)>2 GeV 2<Q²<100 GeV² x_{IP}<0.04 0.05<y<0.7

- NLO massive calculation (HVQDIS)
- scale²= $(4m_c^2 + Q^2)$ varied by 1/4, 4

Good description, supports QCD factorisation

Combined inclusive/jets DPDF

Consistent description of hard diffractive proton interactions in DIS using diffractive parton densities.

 $DIS \approx pointlike photon$

Tevatron

leading order comparison with parton densities from HERA

- "gap survival probability"≈0.1
- rescattering due to second proton

γp : Transition from ep to pp

Hadronic Photon interactions

- photon can fluctuate into a hadronic system, of which one parton with momentum fraction x_{γ} enters the hard scatter
- suppressed with increasing photon virtuality

 $x_y < 1$: photon remnant $x_y \approx 1$: no remnant

Does the photon remnant affect the gap?

γp : Transition from ep to pp

Charm in Photoproduction

massive charm NLO calculation (FMNR)

Similar result from H1: Eur.Phys. J. C50 (2007) 1

- Good description
- supports QCD factorisation
- large uncertainties

Dijets in Photoproduction

yp Gap Survival Probability

Compare DIS and γp dijets

- identical kinematic range
- same data set
- same DPDFs

- some theoretical and experimental uncertainties cancel
- independent of used DPDF

γp : Transition from ep to pp

γp : Transition from ep to pp

Diffractive colour dipole scattering

 $R \sim 1/O$

in proton rest frame:

 γ^*

only my personal naïve speculation...

rescattering depends on overlap of dipole and proton colour fields?

Proton

q

- diffractive parton densities: consistent description of hard diffractive proton interactions in DIS
- Factorisation works for D* photoproduction within large uncertainties
- Dijets in photoproduction
 - $E_T^{(jet)} \gtrsim 5$ GeV:
 - factorisation broken by factor of 0.5
 - gap survival probability=0.5±0.1 w.r.t. to DIS dijets
 - suppression independent of x_{y}
 - $E_T^{(jet)} \gtrsim 7.5 \text{ GeV}$:
 - insignificant suppression (≈ 0.8)
- Possible explanation of suppression in dipole picture

Backup Slides

Global Suppression 0.5

Suppression of direct photon part

At NLO, direct and resolved not cleanly separable use experimentalists approach based on x_{v}

Diffraction?

So far we have parameterised our ignorance of how diffraction occurs in terms of diffractive parton densities.

Alternatives?

The SCI model

Edin, Ingelman, Rathsman

ordinary QCD scattering + final state soft colour reconfiguration

Example W production in $p\bar{p}$ collisions

1 parameter: colour rearrangement probability, tuned to HERA F_2^{D} describes diffractive Tevatron data (gap survival ≈ 0.1)!

Jets in DIS and Photoproduction

hep-ex/0703022

- Leading-order results using LEPTO and PYTHIA (+parton showers)
- proton structure: CTEQ5L LO PDF
- SCI
 - reasonable description in DIS
 - fails in photoproduction
- GAL (refined SCI) fails in both kinematic regions