Photoproduction of Heavy Quarks at HERA

1

On behalf of the ZEUS and H1 Collaborations By John Loizides University College London Photon 2007 July 2007

Outline

- HERA and its charm and beauty.
- Perturbative QCD calculations.
- Inclusive cross sections.
- D* and Jet production.
- Charm fragmentation.
- Beauty production
- Summary

HERA's charm/beauty production

Boson Gluon fusion

Charm & Beauty directly sensitive to the proton gluon density.

Huge kinematical ranges: $0 < p_T < 30 \text{ GeV},$ $0 < Q^2 < 1000 \text{ GeV}^2.$

Photoproduction: $Q^2 \le 1 \text{ GeV}^2$

DIS: $Q^2 > 1 \text{ GeV}^2$

HERA's charm production

At LO Boson Gluon Fusion (BGF) dominates $\rightarrow \gamma g \rightarrow c\bar{c}$

Direct and Resolved contributions

 σ = proton PDF $\otimes \sigma_{\gamma g \rightarrow QQ} \otimes$ photon PDF \otimes fragmentation function

Charm pQCD calculations

pQCD calculations are performed in different ways: Massive (PHP S.Fixione et al) (DIS Harris and Smith), Massless(B_{_}Kniehl et al) and a combined method (M. Cacciari et al).

The "Massive" approach, to fixed order in α_s :

 $\rightarrow m_Q \neq 0$ and the heavy quarks (c and b) are not parts of the structure functions. Heavy quarks produced dynamically in the hard interaction. \rightarrow reliable at $p_T \approx m_O$

DGLAP evolution is used to obtain the quark and gluon densities.

Programs for Photoproduction: FMNR (Frixione et al.)

DIS: HVQDIS (Harris+Smith)

Charm pQCD calculations

"Massless" Approach: re-summation of $\alpha_s \ln(p_T^2 / m_c^2)$ at orders in α_s :

 $\rightarrow M_Q = 0 \rightarrow$ the heavy quarks are an active flavour in the PDF

Heavy quarks can also be produced in flavour excitation

Relaible $p_T >> m_{Q_i}$ (B. Kniehl et al) John Loizides Paris July 2007

Charm Tagging

Charm tagging via D* meson $D^* \rightarrow D^0$, π Where $D^0 \rightarrow K$, π HERA is a charm factory 42680 ± 350 D* mesons. H1 & ZEUS for HERA I 50<luminosity <100 pb⁻¹.

D* Photoproduction inclusive cross sections

Inclusive D* production $\widehat{\mathbf{a}}$ a) • ZEUS (prel.) 98-00 over a large lage of $p_T^{D^*}$ At large $p_T^{D^*}$ massive calculation does better then massless. 10 NLL QCD AFG for y GRV for y only direct y 10 At lower values of $p_T^{D^*}$ massless calculation does better then massive. NLO QCD -3 Expect scenario to be the 10 other way round. 5 10 15 20

p_⊤(D^{*}) (GeV)

D* Photoproduction inclusive cross sections

- •D* selection in photoproduction
- •NLO "massive" and "massless" predictions are compared to the data.
- •d σ / dW is described well, but the shape of d σ / d η (D*) is not well described in shape.
- •Theoretical uncertainties from charm mass and renormalisation scale are large!
- •Precise data \rightarrow Need for NNLO.

Charm over all Q²

Function $\sigma(Q^2) = S M^2 / (Q^2 + M^2)$

S is the photoproduction cross section $Q^2 = 0$

 M^2 is the scale at which the γp cross section changes from photoproduction to DIS $1/Q^2$ behaviour.

It gives a good description over the whole Q² range. $S = 823 \pm 63$ nb and M² =13 ± 2 GeV². M² is close to 4 m_c²

Charm Jet Production

- Jet and D* correlations can be studied when the D* is NOT associated to with a Jet \rightarrow angular correlations arising from higher orders.
- Jet E_T provides an extra hard scale: test QCD!

Charm Jet Production

Test of D* and Jet correlations.

NLO pQCD predictions and LO+PS have troubles to describe the P_T cross section for the D*.

The P_T Jet variable is reasonably well produced in comparison.

Charm Jet Production

 $\gamma p: D^* + other jet$

Charm Dijet Production

- D* Dijet photoproduction.
- Split sample direct-enriched $(x_{\gamma}^{obs} > 0.75)$ resolved-enriched $(x_{\gamma}^{obs} < 0.75)$.*
- Discrepancies between pQCD and resolved-enriched $(x_{\gamma}^{obs} < 0.75).$
- LO+PS can describe shape but not normalisation.
- \rightarrow need for higher order calculations e.g. NLO +PS _{John Loizides Paris July 2007}

15

Charm Fragmantation

•What is the proper parameterisation for the fractional transfer of c-quark energy/momentum to a given D-meson (z)? Fragmentation function, f(z).

Find a jet containing a D* and relate the D* energy to the energy of the jet:

Charm Fragmantation

Differences in kinematical region selected as well as different parameters tuned from H1 to ZEUS in the Monte Carlos.

Beauty Production

Beauty Production

PYTHIA AND CASCADE (LO+PS): Describes the shape well but not the normalisation

pQCD NLO prediction is consistent in both shape and normalisation.

Beauty Production

At low p_t values the data is slightly above the NLO QCD prediction.

HERA II data will provide more accurate measurements and span a wider range covering the full kinematical range.

Summary

• Charm & Beauty results in reasonable agreement with pQCD.

•Areas of disagreement can be selected(e.g. D* + jets) indicating the need for higher order corrections e.g. MC@NLO.

•HERA errors small compared to theoretical uncertainties.

