Multijets in Photoproduction and Multiparton Interactions at HERA

Albert Knutsson on behalf of H1 and ZEUS PHOTON07, Paris, 9-13/7 2007

Outline

- Multiparton Interactions
- Short Summary of Monte Carlo generators
- Multijets in photoproduction (ZEUS)
- Mini jets in DIS (H1)
- Summary

Multiparton Interactions (MPI)

- Underlying event: Everything except the lowest order process
 - Additional parton-remnant interactions, MPI (soft or hard)
 - Partonshowers
 - ...but not pile up

Multiparton Interactions (MPI)

- Underlying event: Everything except the lowest order process
 - Additional parton-remnant interactions, MPI (soft or hard)
 - Partonshowers
 - ...but not pile up

Monte Carlo models with parton showers (relevant for this presentation)

•*RAPGAP*: LO ME + DGLAP parton showers (No MPI) Resolved photon component can be included.

•*CDM*: Parton showers from the Color Dipole Model (No MPI). QPM and BGF events from LO ME.

•PYTHIA: LO ME + DGLAP parton showers MPI: •Average number of interactions/event= $\sigma_{hard}(p_{t, min})/\sigma_{non-diff}$ •Several free parameters: Different tunes exist. Here the default parameters are used.

•HERWIG: LO ME + DGLAP parton showers MPI from JIMMY: •MPI add on package used with HERWIG •Similar to MPI in Pythia •Impact parameter dependence

Variable Definitions

• 0.2 < y < 0.85• $Q^2 < 1.0 \text{ GeV}^2$

 $\begin{array}{l} \textit{Jet Selection} \\ \bullet E_{T}^{jet_{1,2,3,4}} > 6 \ \mathrm{GeV} \\ \bullet |\eta^{jet}| < 2.4 \end{array}$

Kinematic Range

Jets defined by the inclusive kt-algorithm Inv. mass of n-jet system: $M_{nj} = \sqrt{(\sum p_i)^2}$ Fraction of γ -momentum: $x_{\gamma}^{\text{obs}} = \frac{\sum E_{T,i}^{\text{jet}} exp(-\eta_i^{\text{jet}})}{2yE_e}$

where the sums runs over 3 or 4 jets

Measurement

3- and **4-jet cross-sections** as a function of several variables and for:

-Low mass region: $25 < M_{nj} < 50 \text{ GeV}$ -High mass region: $M_{nj} > 50 \text{ GeV}$

MC w/o MPI is normalized to high mass region (M_nj > 50 GeV) •Low mass data not described without MPI's → Most significant for 4-jet scenario

•Inclusion of MPI gives satisfactory description of full mass spectrum

•Hadronization corrections • Constant

•MPI corrections

- Increasing with lower mass
- → Necessary in order to describe data

•Data covered by the large theoretical uncertainties

Cross-sections as a function of rapidity for each of the jets (ordered in E_T)

•No perfect description of data by MC

•Fixed order calculation fails in forward region where higher order reactions are expected to be most prominent

11

Cross-sections as a function of rapidity for each of the jets (ordered in E_T)

Higher mass → higher order reactions kinematically suppressed:
 →Slightly better description by Monte Carlo with ME+PS compared to low M_nj region
 →Much better description of data by O(αα²_s) -calculations compared to low M_nj region

- Photoproduction large resolved photon component
 - remnant-remnant interactions (MPI) very important (as seen from the ZEUS results)

Photoproduction — large resolved photon component

remnant-remnant interactions (MPI) very important (as seen from the ZEUS results)

 MPI in DIS where the resolved photon component is much smaller?
 additional interactions between ME and proton remnant?

Photoproduction — large resolved photon component

remnant-remnant interactions (MPI) very important (as seen from the ZEUS results)

 $5 < Q^2 < 10 \text{ GeV}^2$ $10 < Q^2 < 25 \text{ GeV}^2$ <u>25 < Q² < 100 GeV²</u> 1.2 (b) (a) (c) **HERAI** Η1 Toward Pythia Pythia MI (Preliminary) 1.1F **Inclusive 1 jet sample** and $-1.7 < \eta^{jet} < 0.5$ (d) (e) (f) Away Pythia with MPI does slightly ٨ better at low Q2 < **N** MiniJet 0.5 (lower Q2 -> more res. photon) (h) (g) (i) 0.2 High The Leading Jet 0.1 (j) (k) (I) $\Delta \phi * = 60$ 0.05 Foward Region Low High activity ow activity region region $\Delta \phi * = 120$ 10 20 10 20 10 20 P_{T, Ij} * (GeV) Away Region $\Delta \phi * = 140$

Inclusive 1 jet sample

and $0.5 < \eta^{jet} < 2.79$

More activity in transverse regions compared to event sample with leading jet in central region
Again, more transverse activity in data compared to MC

Di-jet sample

Summary

ZEUS - 3- and 4-jet cross-sections in photoproduction:

• $O(\alpha \alpha_s^2)$ calculation:

•Describes 3-jet mass spectrum

•Describes 3-jet rapidity distributions in high mass region, but fails at low mass

•Large theoretical uncertainty

•MPI corrections large and needed to describe data

•LO ME+PS Monte Carlo:

•MPI needed to describe data. Most relevant for low M_nj and the 4-jet final state

•No perfect description of jet rapidity distributions

H1 - Mini jet production in DIS:

LO ME+PS Monte Carlo without MPI:
 Describes mini jet multiplicity in hard regions
 Not enough activity in transverse regions

•LO ME+PS Monte Carlo with MPI:

•Including MPI improves description of data where res. $\gamma\,$ contribution is large •Remaining regions still need more activity to describe data