

Prompt Photons in Photoproduction and Deep Inelastic Scattering at HERA

Eric Brownson

University of Wisconsin

On behalf of the ZEUS & H1 Collaborations

Photon 2007 Paris, France

Prompt Photons

(b) Resolved

Prompt Photon:

- (a) Direct
- γ is produced in the hard scatter
 - \rightarrow Carries information about the struck parton
 - \rightarrow No Hadronisation correction
 - \rightarrow Sensitive to both quark and gluon densities

Non-Prompt Background:

- ISR/FSR: Photon is radiated from the Lepton
- Radiative events: Photon is radiated after the interaction
- Neutral mesons: Photon originates from a decay of a hadron

Prompt Photons + Jet in Photoproduction

Presence of a jet:

- More sensitivity to underlying partonic processes
- Introduces some hadronisation
 - Smaller hadronisation correction than dijets

Photoproduction ($Q^2 \approx 0$):

- Exchange photon is real
- No additional P_t given to the γ +jet system by e[±]
- The γ +jet will be back to back \rightarrow Well separated

Resolved contribution:

- γ hadronic structure
- Constrain gluon distribution

NLO calculation available:

NLO Calculations

K.Krawczyk & A.Zembrzuski (KZ):

- GRV parametrisation:
 - photon structure function
 - proton structure function
 - fragmentation function

Fontanaz, Guillet & Heinrich (FGH):

- MRST proton structure function
- **AFG** photon structure function

A.Lipatov & N.Zotov (LZ):

- K_t-factorization approach
 - Unintegrated quark/gluon densities using Kimber-Martin-Ryskin prescription

Double resolved $\alpha_s^2 \alpha_{em}^2$ Box diagram $\alpha_s^2 \alpha_{em}^2$

Need hadronic corrections from MC

Prompt Photons in Photoproduction

ZEUS: 99-00 Data, 77.1 pb⁻¹ Photoproduction Sample: $0.2 \le Y_{.IB} \le 0.8$ $Q^2 < 1 \text{ GeV}^2$ 2 or more jets from the K_t algorithm: Photon candidate: $E_{FMC}/E_{Total} \ge 0.9$ $-0.7 \le \eta^{\gamma} \le 1.1$ (BCAL region) $5.0 \le E_t^{\gamma} \le 16.0 \text{ GeV}$ No associated track Low multiplicity: # of energy flow objects Associated jet: $E_{EMC}/E_{Total} \le 0.9$ $-1.6 \le \eta^{jet} \le 2.4$ $6.0 \le E_t^{jet} \le 17.0 \text{ GeV}$ (Note the asymmetric E_t cuts)

Isolated y Identification

Photons

- Isolated e.m. calorimeter shower
- No associated track

Neutral mesons decay into photons

- Produce wider shower in the calorimeter (width)
 - Shower shape variables
- Deposit energy at different rates (depth)
 - Barrel Preshower Detector (ZEUS)

Photoproduction background

ZEUS:

Fit sum of prompt γ MC & background MC to Barrel Preshower Detector (BPRE)

- Determine relative amounts
- Done bin-by-bin for $E_t \mbox{`s}, \ \eta \mbox{`s}$ and $X \gamma$ distributions
- Large fraction of events with
 1 MIP → high purity
- Examine calorimeter based variables
 - $\Delta E = E_{Total} E_{(\gamma + jet)}$
 - D = Distance (in ηφ) from γ to energy flow objects
 - Both are well reproduced by the sum of MCs
- Verified via DVCS sample

Prompt photons in photoproduction and DIS, Eric Brownson, U. Wisconsin

Inclusive Prompt γ

QCD Calculations:

- NLO/LO ratio increasing with η^{γ} from 1.2 to 1.4
- Shown with & without corrections for hadronisation and multiple interactions
- Largest correction factors at high η^{γ}

Eur.Phys.J.C38:437-445(2005)

Prompt γ + Jet

Prompt γ + Jet

 $ep \rightarrow \gamma(prompt) + jet + X$

Momentum Fractions

- KZ & FGH:
 - Improvement compared to LO MC, particularly at high X, (Direct contribution)
 - h.c. & m.i. corrections improve agreement in $x_v^{LO} < 0.6$
- LZ:
- Improvement for low X_v (Resolved contribution)

<u>**P**</u>

1/ σ d σ /dp $_{\perp}$ (GeV⁻¹)

1

10

10

10

H1

a)

2

x_v^{LO}<0.85

$$p_{\perp} \equiv \frac{\mid \vec{p}_{T}^{\gamma} \times \vec{p}_{T}^{jet} \mid}{\mid \vec{p}_{T}^{jet} \mid} = E_{T}^{\gamma} \cdot \sin(\Delta \phi)$$

HERWIG & PYTHIA:

- Agree with data for $x_{\gamma}^{LO} < 0.85$
- PYTHIA best describes $x_{\gamma}^{LO} > 0.85$

KZ & FGH:

Prompt photons in photoproduction and DIS , Eric Brownson, U. Wisconsin

 $ep \rightarrow \gamma(prompt) + jet + X$

1/σ dσ/dp⊥ (GeV⁻

10

10

10

x_{\vert} >0.85

4

b)

PYTHIA HERWIG

6

Minimum E_T^{Jet}<Minimum E_T^γ

Photon 2007, July 10, 2007 - 13

Prompt Photons in DIS

Same as photoproduction:

- Isolated photon
- Hadronic activity
- Separation from background (neutral hadrons)
 - Shower shape analysis

New for deep inelastic scattering:

- Scattered electron
- γ & Jet won't be back to back
- No resolved contribution
- Large contribution from ISR & FSR from e[±]

Prompt Photons in DIS

99-05 Data, 227 pb⁻¹ DIS Sample:

≥ 1 track not from $e^{\pm i}$ $E_e^i > 10 \text{ GeV}$ $153 < \theta_e^i < 177^\circ$ $35 < \Sigma(E-p_z) < 70 \text{ GeV}$ $|Z_{\text{vertex}}| < 40 \text{ cm}$ $0.05 \le \text{Y}$ $4 < Q^2 < 150 \text{ GeV}^2$ $W_{\chi}^2 > 2500 \text{ GeV}^2$ Photon candidate: $-1.2 \le \eta^{\gamma} \le 1.8$ $3.0 \le E_t^{\gamma} \le 10 \text{ GeV}$ No associated track $E_t^{\gamma}/E_t^{\gamma's \text{ kt-jet}} > 0.9$ Associated jet: $-1.0 \le \eta^{\text{jet}} \le 2.1$ $2.5 \text{ GeV} \le E_t^{\text{jet}}$

Shower Shape Variables

Prompt photons in photoproduction and DIS, Eric Brownson, U. Wisconsin

Shower Likelihood

Discriminator:

- Likelihood function from shower shape variables determined via single particle MC simulations
- Fit γ & background MCs to describe data
- Done in bins of $E_t \& \eta$

DIS Cross Section

$ep \rightarrow \gamma(prompt) + X$

- Shapes well described
- Radiation from electron negligible in forward region ($\eta^{\gamma} > 0$)

Prompt photons in photoproduction and DIS, Eric Brownson, U. Wisconsin

γ with & without a Jet

 γ + no jet (no hadronic jet E_T^{Jet} > 2.5 GeV -1.0 < η^{Jet} < 2.1): LL suppressed

 γ + jet: cross section comparable size to photon plus no-jets

Prompt photons in photoproduction and DIS, Eric Brownson, U. Wisconsin

Summary

Photoproduction:

- MC significantly lower than the data (50%)
- NLO QCD calculations describe data reasonably well (80% of data)
 - Differences in the forward jet and low E_{T}^{γ} regions
 - h.c. & m.i. corrections are necessary
 - Minimum E_T^{Jet} < Minimum E_T^{γ} allows better description from theories
- + P_{\perp} described by PYTHIA but not HERWIG
 - HERWIG predicts too hard a P_{\perp} distribution at large x_{γ}^{LO}

DIS:

- LO and MC significantly lower than the data (50%)
 - Most prominent at low Q²
 - High Q²: LO and MC lower, but only by 30%, shapes described
- Exclusive measurement: Photon plus no-jets & photon plus jets
 - Photon plus jets cross section roughly twice the photon plus no-jets cross section
 - Photon plus no-jets: radiation from electron suppressed