



### The IVIIth Rencontres de Moriond on QCD AND HIGH ENERGY HADRONIC INTERACTIONS

### General Search for New Phenomena in ep Scattering at HERA

Martin Wessels, DESY

La Thuile, Aosta Valley, Italy March 17 – 24, 2007

## Motivation & Strategy

- ✓ many dedicated searches for new physics models (LQ, LFV, FCNC, SUSY, ...)
- ✓ some model-independent searches in exclusive final states (lepton production)

### **?** But: Are we missing something?

- investigate all final states produced at high P<sub>⊤</sub> in ep collisions
- do not rely on assumptions about characteristics of a SM extension

• considered particles

electron, photon, muon, jet, neutrino

• common phase space

P<sub>T</sub>>20 GeV 10°<θ<140°

 classification of events into exclusive classes

e-j or  $\mu$ -v-j or j-j-j-j

 systematic search for deviations using dedicated statistic algorithm

## General Search @ H1



HERA I: e<sup>+</sup>p dominated (GS published, Phys Lett B602 (2004) 14-30)

➡ HERA II: large e<sup>-</sup>p data sample (GS 2005/06 e<sup>-</sup>p, Preliminary)

## SM Processes & MC Generation

General Search needs SM prediction for all ep processes



Page 4



1-1-1-1-

## **Multi-Jet Final States**

#### First analysis investigating $\geq$ 4 jet final states at high P<sub>T</sub>

- slight overshoot of data in j-j-j-j class
- one event found in j-j-j-e and j-j-j-v classes
- dominant SM contributions (γP, NC/CC DIS) contain two jets produced by PS
- 1. Is the j-j-j-X MC prediction reliable?

 tests using low P<sub>T</sub> γP and DIS samples show an adequate description of distributions





j-j-j-j-<br/>  $\nu$  event

- 2. Does used MC prediction contain all relevant SM processes?
- MC prediction yields only ~10<sup>-4</sup> events in tails of distributions  $\rightarrow \sigma$  of O(10<sup>-3</sup> fb)
- rare SM processes might contribute ( $ep \rightarrow eWWX$ )
- j-j-j-J-X classes excluded from search for deviations

### Search for Deviations

systematic search for deviations between data and SM prediction in differential (1-dim) distributions with high sensitivity to BSM signals

 $M_{all}$ : invariant mass of objects  $\sum P_T$ : sum of transverse momenta

dedicated statistical algorithm:

1. regions of most interest search region of largest deviation in given histogram

### 2. event class of most interest

weigh up significance of deviations found

#### 3. global significance

decide if "event class of most interest" is interesting at all

## 1. Region of Largest Deviation



- scan all possible connected regions with size ≥ resolution and calculate probability p that data agrees with SM
- region of most interest is that with smallest probability p=p<sub>min</sub>

### 2. Event Class of Most Interest

- determine a measure of the deviations' statistical significance which allows to compare event classes
- **?** What is the probability  $\hat{P}$  to observe a deviation with p<p<sub>min</sub>?
- dice hypothetical histograms H<sub>hyp</sub> according to pdf of SM expectation
- for each H<sub>hyp</sub> run the algorithm to find region of largest deviation: p<sub>min</sub><sup>hyp</sup>

$$\hat{P} = \frac{\operatorname{num} H_{hyp} \operatorname{with} p_{min}^{hyp} < p_{min}^{data}}{\operatorname{tot} \operatorname{num} H_{hyp}}$$



- $\hat{P}$  is measure for significance of  $p_{min}^{data}$
- event class of most interest is that with smallest *P* value

## 3. Global Significance





- take into account that small  $\hat{P}$  values (have to) occur among the multiplicity of studied event classes
- What would be the outcome if we could redo the experiment?
- replace data histograms with MC pseudodata and determine according  $\hat{P}_{\text{MCE}}$  values

$$\hat{P}_{MCE} = \frac{\operatorname{num} H_{hyp} \operatorname{with} p_{min}^{hyp} < p_{min}^{pseudo}}{\operatorname{tot} \operatorname{num} H_{hyp}}$$

 expectation for data P̂ values is given by distribution of P̂<sub>MCE</sub> from multiple MC experiments

# $\Sigma P_T$ and $M_{all}$ Distributions

HERA II e<sup>-</sup>p (159 pb<sup>-1</sup>)



all event classes have systematically been scanned for deviations

allows quantification of overall agreement between HERA data and SM

### Search Results

HERA I (117 pb<sup>-1</sup>)



μ-j-ν: ~3% of MC experiments would produce a deviation more significant





no event classes with remarkably small *P̂* values observed

## Sensitivity to New Physics

 pseudo data samples have been used to test sensitivity to new physics

#### Example

anomalous top production via FCNC



- event classes sensitive on  $t \rightarrow bW$ decay considered (j-j-j, e-j-v,  $\mu$ -j-v)
- -<log P
   <p>> as function of top production cross-section investigated



- largest sensitivity for ΣP<sub>T</sub> scan in j-j-j event class:
   -<log P̂ > of 2 for σ<sub>top</sub> ~0.5 pb
- all 3 event classes with -<log P̂ >
   be above 3 for σ<sub>top</sub> ~1.5 pb

H1:  $\sigma_{t \rightarrow bqq} < 0.48 @ 95\% CL$ 

### Summary



- a model-independent search for new physics signals is performed at HERA using all possible final state configurations at high  $P_T$
- no significant deviation has been observed
- factor 2 increase in e<sup>+</sup>p data sample expected: watch the unexpected!