Heavy Flavour production at HERA

S. Miglioranzi on behalf of the H1 and ZEUS collaborations

DESY

・ロン ・回と ・ヨン・

æ

Rencontres de Moriond: QCD and Hadronic Interactions 17-24 March 2007

- 2 Heavy Flavour
- 3 Charm at HERA
- 4 Beauty at HERA

5 Summary

・ロト ・回ト ・ヨト ・ヨト

æ.

The HERA Collider

HERA Heavy Flavour Charm at HERA Beauty at HERA Summary

HERA HERA II: the upgrade

Luminosity collected by H1/ZEUS

96/00(HERA I): e[±]p ~ 130pb⁻¹
 03/07(HERA II): e[±]p ~ 380pb⁻¹

End of HERA program: June 2007 (last 3 months low energy running $\rightarrow F_L$)

< □ > < □ > < □ > < □ > < □ > < Ξ > = Ξ

HERA II

HERA Heavy Flavour Charm at HERA Beauty at HERA Summary

HERA HERA II: the upgrade

Most relevant upgrades for HFL production:

- H1 Fast Track Trigger
- ZEUS Micro Vertex Detector (MVD)

HFL Production

HERA Heavy Flavour Charm at HERA Beauty at HERA Summary

HFL Production NLO and MC

Dominant production process in ep-collisions: Boson Gluon Fusion

Direct sensitivity to the gluon content of the proton

Kinematic variables:

• $Q^2 = -q^2$ photon virtuality, squared momentum transfer

$$x = \frac{Q^2}{2pq}$$
Bjorken scaling variable

Multiple scales involved:

- = $M_b \sim$ 5 GeV, $M_c \sim$ 1.4 GeV
- $Q^2 \sim 0 \,\, {
 m GeV}^2$ (photoproduction γp)
- $Q^2 > \sim 1 \text{ GeV}^2$ (deep inelastic scattering DIS)
- P_t^{c,b} few GeV

Powerful tool for testing p structure and the applicability of pQCD

< ≣ >

NLO and MC

HERA Heavy Flavour Charm at HERA Beauty at HERA Summary

HFL Production NLO and MC

MONTE CARLO

- leading order + parton shower models available, including flavour excitation, DGLAP evolution (PYTHIA, HERWIG)
- CCFM evolution with k_t factorisation (CASCADE)

THEORETICAL CALCULATIONS

- full NLO calculation (FMNR, HVQDIS) available
- massive scheme FFNS (heavy quark dynamically generated in the hard process)

Charm tagging

HERA Heavy Flavour Charm at HERA Beauty at HERA Summary

Charm tagging Charm results in PHP Charm results in DIS $F_2^{c\bar{c}}$

HERA is a charm factory!

 σ_{uds} : σ_{charm} : σ_{beauty} ~ 2000 : 200 : 1

meson tag, e.g. D^* golden channel: $D^* \rightarrow K^- \pi^+ \pi^+$

≩²⁰⁰⁰⁰ ZEUS ZEUS (prel.) 1995-2000 9 18000 (126.5 pb⁻¹) L backgr, wrong charge 16000 N(D*[±]) = 42730 ± 350 14000 12000 10000 8000 6000 4000 2000 0.14 M(Kππ_e) - M(Kπ) (GeV) ZEUS N/10 MeV 200 175 No S._ cut 150 $S_{\ell,xy} > 5$ 125 • ZEUS (prel.) 05 100 (91 ab⁻¹) 75 25 1.85 1.9 1.95 m(K' \u03c8 \u03

Charm in PHP

HERA Heavy Flavour Charm at HERA Beauty at HERA Summary

Charm tagging Charm results in PHP Charm results in DIS $F_2^{c\bar{c}}$

- H1 updated D* PHP results: 5x statistics (51 pb⁻¹)
- Explored region extended $\rightarrow P_{\tau}^{jet}$ lowered to 3 GeV
- Theoretical uncertainties of GMVFNS larger than data

Available NLO underestimate significantly the xsec in $\Delta \phi(D^*, jet) < 120^\circ \rightarrow \text{higher}$ order contributions

イロン イヨン イヨン イヨン

æ

GMVFNS (General-mass variable-flavour-number scheme), ZMVFNS (Zero-mass variable-flavour-number scheme).

Charm in DIS

HERA Heavy Flavour Charm at HERA Beauty at HERA Summary

Charm tagging Charm results in PHP Charm results in DIS $F_2^{c\bar{c}}$

- Data described by NLO QCD over 5 order of magnitude.
- current HERA II results (162 pb⁻¹) comparable precision

- First measurement in transition region between PHP and DIS (DESY-07-012) Low Q² values reached by measuring the scattered electron in
 - Beam Pipe Calorimeter.

BPC results

- $\bullet \ 0.05 < Q^2 < 0.7 \ {\rm GeV}^2$
- fit $\sigma(Q^2) = SM^2/(Q^2 + M^2)$, $\rightarrow M^2 = 13 \pm 2$ GeV², $(M^2 \sim 4m_c^2)$

Fragmentation

HERA Heavy Flavour Charm at HERA Beauty at HERA Summary

Charm tagging Charm results in PHP Charm results in DIS $F_2^{c\bar{c}}$

The production cross section of each charmed meson can be measured and the fragmentation fractions of charm into each meson can be estimated

Measurements at HERA agree with e^+e^- : charm fragmentation fractions do not depend on the hard subprocess (universality)

 $F_2^{c\overline{c}}$

HERA Heavy Flavour Charm at HERA Beauty at HERA Summary

Charm tagging Charm results in PHP Charm results in DIS $F_2^{c\bar{c}}$

$$\begin{split} F_2^{c\bar{c}} & \text{related to double differential cross section:} \\ \frac{d^2 \sigma^{c\bar{c}}(x,Q^2)}{dxdQ^2} &= \frac{2\pi\alpha^2}{xQ^4} \left([1+(1-y)^2] F_2^{c\bar{c}}(x,Q^2) - y^2 F_L^{c\bar{c}}(x,Q^2) \right) \end{split}$$

- $F_L^{c\bar{c}}$ neglected (y small)
- the measured F₂^{cc̄} unfolded using a ratio of measured and theory cross sections to F₂^{cc̄} thus:

$$F_{2,meas}^{c\bar{c}}(x_i, Q_i^2) = rac{\sigma_{i,meas}(ep o D^*X)}{\sigma_{i,theo}(ep o D^*X)} F_{2,theo}^{c\bar{c}}$$

- Recent H1 measurement performed via lifetime tagging
- Scaling violation visible in $F_2^{c\bar{c}}$ evolution

イロト イヨト イヨト イヨト

Charm tagging Charm results in PHP Charm results in DIS $F_2^{c\overline{c}}$

12 / 27

Beauty tagging

HERA Heavy Flavour Charm at HERA Beauty at HERA Summary Beauty tagging lifetime tag double tagging beauty summary F_2^{bb}

- Large B mass: P_t of muon relative to the jet axis (P^{rel}_T)
- Long B lifetime: muon impact parameter (δ)

lifetime tag

HERA Heavy Flavour Charm at HERA Beauty at HERA Summary Beauty tagging lifetime tag double tagging beauty summary F_2^{bb}

- Inclusive PHP sample (all tracks with P_t > 500 MeV)
- Significance of signed impact parameter: $S = \frac{\delta}{\sigma(\delta)}$ S1 (1 track associated to jet) significance of the track S2 (\geq 2 tracks associated to jet) second highest significance \rightarrow enhanced sensitivity to *b*
- extract b anc c fraction from fit to subtracted significance distributions

ADVANTAGE: higher statistics w.r.t. D^* or lepton analysis

<->→ □→ < ≥→</>

cross sections

HERA Heavy Flavour Charm at HERA Beauty at HERA Summary Beauty tagging lifetime tag double tagging beauty summary F_2^{bb}

First simultaneous measurement of Charm and Beauty in PHP. Jet transverse momentum extended to larger values w.r.t. previous measurements.

- PYTHIA and CASCADE (LO+PS) : good shape description but generally data higher in normalisation.
- pQCD NLO prediction consistent both in shape and normalization

FMNR: CTEQ5F3 proton PDF , GRV-G HO photon PDF

・ロト ・回 ト ・ヨト ・ヨト

double tagging

HERA Heavy Flavour Charm at HERA Beauty at HERA Summary Beauty tagging lifetime tag double tagging beauty summary F_2^{bb}

$\begin{array}{l} b \text{ double tag} : \\ ep \rightarrow b\bar{b}X \rightarrow \mu\mu X' \\ ep \rightarrow b\bar{b}X \rightarrow D^*\mu X' \end{array}$

Low background

- di-mu and D*-mu selection in final state
- separation of the sample in high-low mass, isolated and non-isolated, like and unlike sign muon pairs

Full phase space for production

- low P_t threshold for muon identification
- large rapidity coverage of ZEUS muon system

Direct measure of total $b\bar{b}$ cross section w/o any cuts

- muons from same b: unlike sign, same hemisphere, mass below B hadron mass
- muons from different b: both like and unlike sign, different hemisphere

イロト イヨト イヨト イヨト

di-muons

HERA Heavy Flavour Charm at HERA Beauty at HERA Summary Beauty tagging lifetime tag double tagging beauty summary F_2^{bb}

ZEUS

background sources

- open c production (high mass, unlike sign)
- hidden c (JΨ, Ψ') (low mass, unlike sign)
- γγ processes (high mass, unlike sign)
- fake µ (light flavour bkg) (like and unlike sign)

background subtraction

- charm pair production (unlike sample only) estimated from $D^* + \mu$ analysis
- fake µ bkg removed using difference sing-unlike sing samples (IfI cancels)

・ロト ・回ト ・ヨト ・ヨト

æ

what is left is only b contribution

$(ep ightarrow b ar{b} ightarrow \mu \mu X)$

- $\sigma^{vis}: 63 \pm 7(stat.)^{+20}_{-18}(syst.) \text{ pb}$
- NLO: $30^{+9}_{-6}(NLO)^{+5}_{-3}(frag + br)$ pb

FMNR: p PDF CTEQ5M, γ PDF GRV-G-HO

Beauty tagging lifetime tag double tagging beauty summary F_{2}^{bb}

- This measure extends to significantly lower centre-of-mass energies of bb system than previous HERA xsections
- Simultaneously detection of D^* and $\mu \rightarrow$ test high order QCD effects
- D* µ sensitive to possible transverse momentum kt of the gluons entering the quark pair production process

 $\sigma_b^{vis}(ep
ightarrow eD^* \mu X)$

- H1: 206 \pm 53 \pm 35 pb (NLO: 53⁺¹⁴₋₉ pb)
- ZEUS: 115 ± 29²¹₋₂₇ pb (NLO: 54⁺¹⁵₋₁₀ pb)(DESY-06-166)

 $\sigma_c^{vis}(ep
ightarrow eD^* \mu X)$

■ H1: 250 ± 57 ± 40 pb (NLO: 286⁺¹⁵⁹₋₅₉ pb)

FMNR: p PDF CTEQ5M, γ PDF GRV-G-HO

correlations

HERA Heavy Flavour Charm at HERA Beauty at HERA Summary Beauty tagging lifetime tag double tagging beauty summary F_2^{bb}

Azimuthal correlations for:

 \blacksquare deviations from LO \rightarrow high order effects, good agreement with NLO

・ロト ・回ト ・ヨト

< ≣ >

æ

beauty summary

HERA Heavy Flavour Charm at HERA Beauty at HERA Summary Beauty tagging lifetime tag double tagging beauty summary F_2^{bb}

HERA

at low p_T values data slightly above NLO QCD calculations

• HERA II data needed to improve cross section determination, especially in the low- p_T^b (double tag measurements) and high- p_T^b (lifetime mesurements) regions

S. Miglioranzi Heavy Flavour production at HERA

- pQCD tested with HFL production
- Charm production
 - NLO describe data well in a large range of Q^2 (including transition region between PHP and DIS)
 - Fragmentation universality confirmed
 - Charm data in PHP more precise than theory

Beauty production

- Data agree with NLO at high P_t, at lower P_t tendency of data to be above the central NLO predictions.
- First measurements of $F_2^{b\bar{b}}$ structure function
- HERA II data are being analysed. More precise and interesting measurements to come...

・ロト ・回ト ・ヨト ・ヨト

backup I

HERA Heavy Flavour Charm at HERA Beauty at HERA Summary

ZEUS PHP dijets correlations

イロン イヨン イヨン イヨン

æ

backup II

HERA Heavy Flavour Charm at HERA Beauty at HERA Summary

massive scheme

- c, b massive
- neglects terms $(\alpha_s \ln(Q^2/m_{c,b_s}^2))^n$
- scales m_b, m_c

 \rightarrow c, b produce perturbatively (not part of the photon or proton) massless scheme

- c, b massless
- resums terms $(\alpha_s \ln(Q^2/m_{c,b_s}^2))^n$
- scales Q^2 , p_t
- \rightarrow c, b also in proton and photon variable flavour number scheme

- massive at small Q²
- massless at large Q²

backup III

HERA Heavy Flavour Charm at HERA Beauty at HERA Summary

main reason for beauty suppression: phase-space factor

- kinematic threshold for b production due to its mass
- $x_g \geq \frac{m_Q^2}{E_\gamma \times 920~GeV}$ (x_g fraction of four-momentum of the proton carried by the gluon participating in the hard interaction)
- for charm $x_g \ge 10^{-4}$, for beauty $x_g \ge 10^{-3}$

・ロト ・回ト ・ヨト

< ≣⇒

æ

 $F_2^{c\overline{c}}$

HERA Heavy Flavour Beauty at HERA Summary

Heavy Flavour production at HERA

・ 回 ト ・ ヨ ト

< ∃>

æ