Inclusive and Exclusive Diffraction at HERA

MORIOND QCD 2007

Tomas Hreus (ULB/UPJS)

on behalf of

H1 and ZEUS collaborations

Inclusive Diffraction Diffractive Parton Densities Factorisation Tests Exclusive Final States

Diffractive Scattering at HERA

e'(k') e(k) $Q^{2} = -q^{2}$ x_{Bj} p(P) p remnant W

Deep inelastic scattering

- proton breaks

p remnant and struck q
connected by colour fields
γ* probes internal structure of
proton

Diffractive DIS

- proton stays intact

- no colour flow between p and γ^* (t-channel of exchange of the vacuum quantum numbers)

 \rightarrow gap in rapidity between X and p

 $\sim 10\%$ of low x events at HERA are diffractive

Diffractive Scattering at HERA

-in addition to DIS:

- β = momentum fraction of IP taken by parton in hard subprocess
- x_{IP} = proton momentum loss ($x_{BJ} = \beta x_{IP}$)
- *t* = momentum transfer squared at *p* vertex

- with high energy at HERA \rightarrow hard diffraction with pQCD approach (hard scale by Q^2 , q mass, E_T ...) **Diffractive DIS**

 \rightarrow probe partonic structure of diffractive exchange

Main observable - reduced cross-section

$$\frac{\mathrm{d}^3 \sigma^{ep \to eXY}}{\mathrm{d}x_{I\!\!P} \,\mathrm{d}x \,\mathrm{d}Q^2} = \frac{2\pi\alpha^2}{xQ^4} \cdot Y_+ \cdot \sigma_r^{D(3)}(x_{I\!\!P}, x, Q^2)$$

 $F_2^{\ D}$ defined in similar way as inclusive F_2

$$\sigma_r^{D(3)} = F_2^{D(3)} - \frac{y^2}{Y_+} F_L^{D(3)}$$

 F_L^D important at high y

Factorisation in Hard Diffraction

QCD factorisation proven by Collins: $d\sigma^{ep \to eXY}(x, Q^2, x_{\mathbb{P}}, t) = \sum_i f_i^D(x, Q^2, x_{\mathbb{P}}, t) \otimes d\hat{\sigma}^{ei}(x, Q^2)$ **× (M_{*})** \rightarrow allows DPDFs to be introduced: f_i^D = the parton distribution function for a parton *i* under the constraint that the proton survives the diffractive scattering; universal for all hard

processes

Assumption of proton vertex factorisation:

$$f_i^D(x, Q^2, x_{I\!\!P}, t) = f_{I\!\!P/p}(x_{I\!\!P}, t) \cdot f_i(\beta = x/x_{I\!\!P}, Q^2)$$

supported by data within present precisionno firm basis in QCD

Selection Methods at HERA

 $e p \rightarrow e X p$

indirect

 M_X method, different mass spectrum in diffr. vs non-diffr:

$$\frac{dN}{d\ln M_X^2} = D + c \cdot \exp(b \,\ln M_X^2)$$

Proton

use proton spectrometers (FPS, LPS) to measure *p*, direct access to *t*

Diffractive Structure Function F₂^D

- large positive scaling violations up to $\beta \sim 0.7 \rightarrow \text{suggests large gluon content}_{6}$

F₂^D: Different Methods Agreement

Combined analysis of the same dataset using different methods to test their agreement

reasonable agreement found; work still ongoing to understand possible differences

Diffraction with Proton Spectrometers

Access to *t* measurement = study of $d\sigma^D/dt \sim e^{-B/t/}$

- decrease of slope observed at high x_{IP} region ($x_{IP} > 0.03$)

Diffractive Parton Distribution Functions

10

70% of momentum carried by gluons

 $Q^2 [GeV^2]$

QCD Factorisation Tests

- take diffractive PDFs from inclusive cross-section measurement and predict NLO cross-section in other hard diffractive processes:

Would the QCD factorisation hold?

Dijets in DIS

QCD Fit A from inclusive DDIS doesn't describe high z_{IP} (most sensitive to gluon)

 \rightarrow use dijets to constrain gluon in fits (as jets arise dominantly due to boson-gluon fusion process) and extract new set of DPDFs...

QCD factorisation confirmed for diffractive dijets in DIS regime

Combined QCD Fit

- combined NLO QCD Fit to inclusive diffraction + dijets

- new fit constrains quark and gluon densities over a wide range ($0.05 < \chi < 0.9$)

- precision on gluon component is better and shows smaller contribution than fits from inclusive data alone

- close to H1 2006 Fit B

QCD Factorisation Tests in Photoproduction

- factorisation is not proven for h-h interactions: broken at Tevatron, by factor of ~ 10 in normalisation, when using extrapolated HERA DPDFs

Dijets in Photoproduction / QCD Factorisation Breaking

QCD factorisation broken uniformly over x_v

Diffractive D* Measurement

D* in **DIS**

In agreement with NLO QCD predictions in both regimes, but within large errors (supports QCD factorisation)

- use of displaced tracks from primary vertex to distinguish (statistically) between events containing heavy charm quark from those containing only light quarks

- good agreement between experiments, but statistically limited
- predictions from H1 2006 QCD Fits describe data well
- charm contribution to $F_2^D \sim 20\%$ (similar as for inclusive DIS)

Exclusive Final States

-
$$\rho^0$$
 and J/ Ψ at large *t* in photopr. $e p \rightarrow e VM Y$

- ρ^0 at small *t* in photoproduction $e p \rightarrow e \rho p$

BFKL gives reasonable description for the shape of *t* distribution

s-channel helicity conservation violation observed

observed strong rise with WFit in W motivated by Regge formalism

 $\alpha_{IP}(0) = 1.153 \pm 0.048_{\text{stat}} \pm 0.039_{\text{syst}}$ $\alpha'_{IP} = -0.020 \pm 0.014_{\text{stat}} \pm 0.010_{\text{syst}}$

- similar to H1 values
- consistent with BFKL prediction 18

ρ^{θ} Meson in Photoproduction

H1 PRELIMINARY H1 PRELIMINARY Elastic p⁰ Photoproduction H1 '05 Preliminary -t [GeV²] 1.20 0.010.×2.0 H1 '05 fit $d\sigma/dt~(\gamma p \rightarrow \rho^0 p)~[\mu b/GeV^2]$ 0.035,×1.2 Zeus '95 10² 0.069 1.15 Zeus '95 fit 0.123 Donnachie-Landshoff 0.189 1.10 0.26 38 α(t) 1.05 0.58 1.00 '05 Preliminary '05 fit ZEUS '94 10-1 ZEUS '94 LPS 0.95 ZEUS '95 20 40 50 60 70 30 100 0.90

- first measurement of $\alpha_{IP}(t)$ from a single experiment (~ 240k events)

 $\alpha_{\mathbb{P}}(t) = 1.093 \pm 0.003(stat.)^{+0.008}_{-0.007}(syst.) + (0.116 \pm 0.027(stat.)^{+0.036}_{-0.046}(syst.)) \,\mathrm{GeV^{-2}} \cdot t$

 α'_{IP} not compatible with 0.25 GeV⁻² (Donnachie, Landshoff) - confirms indirect ZEUS measurement

W [GeV]

Elastic p⁰ Photoproduction

Summary

- new H1 QCD Fits from inclusive diffractive DIS are available and can be used to test QCD hard scattering factorisation

- combined QCD fit result with dijets gives better constrain on gluons at high z

- QCD factorisation is observed in DIS for dijets and charm and is broken in dijets in photoproduction by a factor of 2 (holds in charm, but within large uncertainties)

- ρ^0 and J/Ψ mesons at high *t* in photoproduction confirm predictions based on BFKL evolution of parton densities

- ρ^0 meson photoproduction shows disagreement with the soft pomeron trajectory slope

Backup slides

H1 2006 QCD Fit

at low β strong sensitivity to gluon (g \rightarrow qq) at high β sensitivity to g weakens (q \rightarrow qg)

- kinematic region: $\beta < 0.8$, $Q^2 > 8.5 \text{ GeV}^2$

Parton density parameterisation:

 $z\Sigma(z, Q_0^2) = A_q \ z^{B_q} \ (1-z)^{C_q}$ $zg(z, Q_0^2) = A_g \ (1-z)^{C_g}$

ρ^{θ} Meson s-channel helicity conservation violation

