Electroweak Studies and Searches in Inclusive High $Q^2 e p$ Collisions

IVIIth Rencontres de Moriond, 10.3.–17.3.2007

Stefan Schmitt, DESY Hamburg

More HERA results: http://www-h1.desy.de http://www-zeus.desy.de

- The HERA collider and the experiments ZEUS and H1
- Inclusive cross-sections
- Polarized inclusive cross-sections
- Electroweak studies
- Searches for leptoquarks and contact interactions

The HERA collider and the experiments H1 and ZEUS

- $e^{\pm}p$ collider at DESY/Hamburg
- $E_e = 27.6 \,\text{GeV}$ and $E_p = 920 \,\text{GeV}$, $\sqrt{s} = 320 \,\text{GeV}$
- 1994–2000: HERA I: $2 \times 120 \,\mathrm{pb}^{-1}$
- 2003–2007: HERA II: $2 \times 350 \text{ pb}^{-1}$ and longitidinally polarized e^{\pm}

Neutral Current cross-section

Event topology:

• Scattered electron in the detector

Kinematic variables:

- Momentum transfer squared Q^2
- Fraction of proton momentum *x* carried by struck quark

• Inelasticity
$$y = \frac{1 - \cos\theta^*}{2} = \frac{Q^2}{sx}$$

Cross-section:

$$\frac{d^2 \sigma^{NC}}{dx \, dQ^2} \left(e^{\pm} p \right) = \frac{2\pi \alpha^2}{xQ^4} \left[Y_+ \, \tilde{F}_2 \mp Y_- \, x \tilde{F}_3 - y^2 \, \tilde{F}_L \right] \quad \text{Helicity functions:} \, Y_\pm = 1 \pm (1-y)^2$$

Structure functions:

 \tilde{F}_2 is sensitive to sea and valence quarks: $F_2 \sim \sum_q (q + \bar{q})$ $x\tilde{F}_3$ is sensitive to valence quarks alone: $xF_3 \sim \sum_q (q - \bar{q})$

Stefan Schmitt, DESY

Charged Current cross-section

Event topology:

• Neutrino escapes detection

Kinematic variables:

- Momentum transfer squared Q^2
- Fraction of proton momentum *x* carried by struck quark

• Inelasticity
$$y = \frac{1 - \cos\theta^*}{2} = \frac{Q^2}{sx}$$

$$\frac{d^2 \sigma^{CC}}{dx \, dQ^2} \left(e^+ p \right) = \left(1 + P_e \right) \quad \frac{1}{x} \quad \frac{G_F^2 M_W^4}{4\pi (Q^2 + M_W^2)^2} \quad \left[(1 - y)^2 (xd + xs) + (x\bar{u} + x\bar{c}) \right] \\ \frac{d^2 \sigma^{CC}}{dx \, dQ^2} \left(e^- p \right) = \left(1 - P_e \right) \quad \frac{1}{x} \quad \frac{G_F^2 M_W^4}{4\pi (Q^2 + M_W^2)^2} \quad \left[(xu + xc) + (1 - y^2) (x\bar{d} + x\bar{s}) \right] \\ \text{Polarisation} \quad W \text{ exchange} \qquad \text{Parton densities} \end{cases}$$

Inclusive cross-sections as a function of Q^2 : NC and CC

HERA II

Double-differential NC cross-section, xF_3

Extraction of $xF_3^{\gamma Z}$

$$xF_3^{\gamma Z}$$
: \tilde{F}_3 with kinematical factors removed
 $xF_3^{\gamma Z} = \sum_q 2e_q a_q (xq - x\bar{q}) = \frac{2}{3}xu_v + \frac{1}{3}xd_v$
 \rightarrow Valence quark content of p
 \rightarrow Sensitivity to a_q

Weak Q^2 dependence \rightarrow transform all points to $Q^2 = 1500 \, {\rm GeV^2}$

Sum rule:

$$\int_{0}^{1} \frac{xF_{3}^{\gamma Z}}{x} dx = \int_{0}^{1} \left(\frac{2}{3}u_{v} + \frac{1}{3}d_{v}\right) dx = \frac{5}{3}$$

Combined result from ZEUS, H1:

$$\int_{0.02}^{0.65} \frac{xF_3^{\gamma Z}}{x} dx = 1.21 \pm 0.09 \text{ (stat)} \pm 0.08 \text{ (sys)}$$

Compatible with Sum rule if integral is extrapolated to [0, 1]

Stefan Schmitt, DESY

Lepton polarisation at HERA II

HERA I+II: Transverse polarisation for H1+ZEUS Not useful for physics

HERA II:

Luminosity upgrade for H1+ZEUS Longitudinal polarisation for H1+ZEUS \rightarrow new electroweak results

Polarised Charged current cross-section

Linear dependence of σ^{CC} on P_e confirmed.

Extrapolation to $P_e = \pm 1$

$\sigma^{CC}(e^-p)$ [pb] extrapolated to $P_e = 1$			
H1 (prel.)	$-0.9\pm2.9_{\rm stat}\pm1.9_{\rm sys}\pm2.9_{\rm pol}$		
ZEUS (prel.)	$0.8\pm3.1_{\rm stat}\pm5.0_{\rm sys+pol}$		
$\sigma^{CC}(e^+p)$ [pb] extrapolated to $P_e = -1$			
H1	$-3.9\pm2.3_{\rm stat}\pm0.7_{\rm sys}\pm0.8_{\rm pol}$		

No sign of right-handed charged currents! Convert to 95% limit on heavy W_R boson: $M_{W,R} > 208 \,\mathrm{GeV} \,(\mathrm{H1}, \, e^+ p)$

Complementary to direct searches at Tevatron.

New results from HERA II: Polarised Neutral current cross-section

Asymmetry of the two polarisation states

$$A^{\pm} = \frac{2}{P_R - P_L} \frac{\sigma^{\pm}(P_R) - \sigma^{\pm}(P_L)}{\sigma^{\pm}(P_R) + \sigma^{\pm}(P_L)}$$

 $A \neq 0$ at highest Q^2 :

Evidence for parity violation in neutral currents at small distances $10^{-18} m$

Expect $A^+ \approx -A^-$ within the standard model.

$$A \sim \frac{\sum_{q} e_q v_q(q+\bar{q})}{\sum_{q} e_q^2(q+\bar{q})}$$

Sensitivity to the quark vector couplings v_q .

Electroweak fits at HERA

Charged current: sensitivity to G_F , M_W

Neutral current: sensitivity to light quark axial and vector couplings $v_{u,d}$, $a_{u,d}$

HERA fits: mainly about precise determination of α_S and PDFs

Results presented here: recent papers about HERA fits of electroweak parameters.

W mass determination

Charged Current: sensitive to G_F and M_W Fit I: fixed G_F , determine M_W FIT II: simultaneous fit of G_F and M_W

G_F fixed	$M_W[{ m GeV}]$			
H1 (HERA I)	$82.87 \pm 1.82_{ m exp} {}^{+0.30}_{-0.16} _{ m model}$			
ZEUS (HERA I+II)	$79.10 \pm 0.77_{ m stat} \pm 0.99_{ m sys}$			
G_F free	$M_W [{ m GeV}]$	$G_F [10^{-5} {\rm GeV}^{-2}]$		
ZEUS (HERA I+II)	$82.8 \pm 1.5_{\rm stat} \pm 1.3_{\rm sys}$	$1.127 \pm 0.013_{\rm stat} \pm 0.014_{\rm sys}$		

Electroweak u and d quark couplings

NC cross-section: measure u, d quark axial and vector couplings:

- $F_2^{\gamma Z}$ is sensitive to v_q : $F_2^{\gamma Z} = 2 \sum_q e_q v_q (xq + x\bar{q})$
- $F_3^{\gamma Z}$ is sensitive to a_q : $F_3^{\gamma Z} = 2 \sum_q e_q a_q (xq + x\bar{q})$

HERA I analyses: reduced sensitivity to v_q (no polarisation)

(a_u, v_u) Fit	a_u	v_u
H1 (HERA I)	0.57 ± 0.08	0.27 ± 0.13
ZEUS (HERA II)	0.50 ± 0.10	0.19 ± 0.08
SM value	0.5	0.196
(a_d, v_d) Fit	a_d	v_d
H1 (HERA I)	-0.80 ± 0.24	-0.33 ± 0.33
ZEUS (HERA II)	-0.49 ± 0.30	-0.37 ± 0.22
SM value	-0.5	-0.346

Searches for new physics in inclusive ep data

Topics presented in this talk: searches for leptoquarks, contact interactions

See talk by **James Ferrando** for other searches at HERA.

Leptoquark searches at HERA

- Leptoquark (LQ): boson with baryonic and leptonic quantum numbers, fermion number F = 3B + L
- Example: Squark in R_p violating SUSY
- LQ at HERA: single production
 - $M_{LQ} < 300$ GeV: resonant production $M_{LQ} = \sqrt{sx}$ (F=0 in e^+p and F=2 in e^-p)
 - $M_{LQ} \gg 300$ GeV: contact interaction
- Decay: Neutral current or charged current

Leptoquark limits

For $M_{LQ} = 200$ GeV: couplings of order $\lambda \gtrsim 0.03$ are excluded. For $\lambda = 0.3$ (el. magn. strength) LQ masses of order $M_{LQ} \lesssim 300$ GeV are excluded. HERA II limits: sizeable improvements wrt. HERA I limits (luminosity, polarisation)

$\square \square $							
$F = 0: \frac{M_{LQ}}{\lambda} [\text{TeV}]$	$S_{1/2}^{L}$	$S^{R}_{1/2}$	$\tilde{S}_{1/2}^L$	V_L^0	V_0^R	\tilde{V}_0^R	V_1^L
ZEUS HERA I+II	0.88	0.46	0.44	0.80	0.62	1.33	1.91
H1 HERA I	0.85	0.37	0.43	0.73	0.58	0.99	1.36
$F = 2: \frac{M_{LQ}}{\lambda} [\text{TeV}]$	S_0^L	S_0^R	$ ilde{S}^R_0$	S^1_L	$V_{1/2}^{L}$	$V^R_{1/2}$	$\tilde{V}^L_{1/2}$
ZEUS HERA I+II	0.96	0.82	0.32	0.88	0.46	1.00	1.10
H1 HERA I	0.71	0.64	0.33	0.49	0.42	0.95	1.02

Limits at high masses	$M_{LQ} \gg 300 GeV$:
-----------------------	------------------------

Stefan Schmitt, DESY

Searches for Contact interactions at HERA

$$\mathcal{L} = \sum_{q=u,d} \eta^{q}_{LL} (\bar{e_L}\gamma^{\mu}e_L)(\bar{q_L}\gamma^{\mu}q_L) + \eta^{q}_{RL} (\bar{e_R}\gamma^{\mu}e_R)(\bar{q_L}\gamma^{\mu}q_L) + \eta^{q}_{LR} (\bar{e_L}\gamma^{\mu}e_L)(\bar{q_R}\gamma^{\mu}q_R) + \eta^{q}_{RR} (\bar{e_R}\gamma^{\mu}e_R)(\bar{q_R}\gamma^{\mu}q_R)$$

Effective Lagrangian with coupling constants $\eta_{ab}^q = \frac{\epsilon_{ab}^q}{\Lambda^2}$ and $\epsilon_{ab}^q = \begin{cases} 0\\ \pm 1 \end{cases}$.

Cross-section shape is altered at high Q^2 in the presence of CI

New ZEUS results with full HERA I+II statistics

 \rightarrow Sensitivity on Λ up to 7.5 TeV

Summary

- New results from HERA II: high luminosity and polarisation
- Probing electroweak physics in deep-inelastic scattering:
 Charged current: W mass, polarisation dependence
 Neutral current: xF₃, polarisation dependence, axial and vector couplings of u and d
- Searches for new phenomena in inclusive data: Leptoquarks and Contact interactions: sensitivity to the TeV scale
- Data from 2006 and 2007 still being analysed expect new results this summer.
- Summer 2007: end of HERA operation, with integrated luminosity $H1+ZEUS \approx 1 \text{ fb}^{-1}$

Backup: Large extra dimensions

Consider space time with 4+n dimensions, where the compactified extra dimensions are of size R.

Fundamental Planck scale $M_D = \mathcal{O}(\text{TeV})$ in D = 4 + n dimensions \rightarrow generates Planck scale M_P in 4 dimensions, $M_P^2 \approx M_D^{2+n} R^n$.

Gravitational excitations in the extra dimensions are visible as contact interactions with effective coupling strength $\eta_G = \frac{g}{M_S^4}$ ($g = \pm 1$), where $M_S \approx M_D$

Lower limit on M_S [TeV]			
	g = +1	g = -1	
ZEUS prel (1994-2005)	0.88	0.86	
ZEUS (1994-2000)	0.78	0.79	
H1 (1994-2000)	0.82	0.78	

Limits on M_S close to 0.9 TeV, independent of the number of extra dimensions n.

HERA II: ZEUS-prel-06-018 (ICHEP 2006) HERA I: Phys Lett B 568 (2003) 35-47 and Phys Lett B 591 (2004) 23-41